
22 BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

prAcTIcAl DAShboArD DevelopmenT

Implementing
Dashboards for
a Large Business
Community
A Practical Guide for the Dashboard
Development Process

Doug calhoun and ramesh Srinivasan

Abstract
Dashboards are becoming more prevalent as business intelli-
gence tools, and the reason is obvious: well-designed, accurate
dashboards can quickly communicate important business
indicators and trends and provide actionable information.

However, creating and implementing a successful dashboard
involves a great amount of work. It often requires implementing
tight controls while allowing the flexibility needed to test and
learn with the business.

This article outlines tips for how to integrate these seemingly
 divergent processes as well as how to ensure the data
accuracy, ease of use, and optimal performance that make
a truly successful dashboard.

Introduction
The use of dashboards as a primary business intelligence
tool is expanding quickly. When supporting a business
unit fueled by data, how does an application team build
dashboards that will provide great business value and
be sustainable?

There are many methods for doing this, as we will explain
in this article. However, there are also certain fundamen-
tal principles that may seem obvious, but can be difficult
to implement:

 ■ Engage business users, not just at the beginning and
end of a project, but throughout the entire process.
Make business users your partners.

Doug Calhoun is systems analyst, claims

technology—data and information delivery

at Allstate Insurance Company.

dcal9@allstate.com

ramesh Srinivasan is manager, claims

technology—data and information delivery

at Allstate Insurance Company.

rsri2@allstate.com

23BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

prAcTIcAl DAShboArD DevelopmenT

 ■ Involve the entire application team throughout your
project’s life. A factory-like approach of handing off
tasks from phase to phase will not work well.

 ■ Although design updates may require an iterative
approach with business users, the number of compo-
nents needed should drive the team to define phases and
key deliverables early in your project to keep it on track.

 ■ Sophisticated user interfaces are great, but in the
end, it’s really about the data. Ensure that everyone
is in agreement about how to define the data from a
business point of view, and create a plan for how to
validate it.

 ■ Ease of use is critical. Make sure your business part-
ners get hands-on opportunities as often as possible.

 ■ Design your technology based on the number and types
of users. Performance and capacity should be considered
when designing and building dashboards, much as they
are with more traditional transactional systems.

This article is not intended to serve as a guide to visual
design. That topic has already been studied extensively
and successfully. We will discuss best practices for the
process of creating a successful design.

In addition, the word dashboard is used here as a general
term for data visualization tools showing at-a-glance
trends and other indicators. It is not meant to signify
the timing or refresh rate of the data, and could be
used interchangeably with “scorecard” depending on
how a business unit chooses to define it. In the business
intelligence world, “dashboard” has become the most
common term, so it will be used here with assumed
broader connotations.

Another concern is process methodology. Many compa-
nies primarily employ a waterfall life cycle, which can be
a difficult fit for a business intelligence implementation.
However, a purely agile methodology for dashboards
can also lead to trouble, as there are complexities with
development and testing that require a certain level of
more traditional phase-gating.

Essentially, the dashboard needs to be treated both as
an application (with all the functional testing required)
as well as a mechanism for providing data, including
iterative testing and prototype updates. A certain level of
flexibility in your development process may be required to
achieve a happy medium and ensure a successful rollout.

Depending on the size of your company, you may also
need to leverage the assistance of other technology groups
to implement. Where appropriate, involve groups such
as your business intelligence community of practice or
center of expertise; data, solution, and/or BI architecture;
database administrators; all associated infrastructure/
server administrators; change and release coordinators;
and any other applicable groups you believe should be
enlisted. Do this early.

All of this may require “innovating your process,” which
might sound like a contradiction in terms to process
methodologists but may have practical application to
your work. The best practices below will guide you in the
direction that best fits your project’s needs.

Starting the Project
If you are embarking on a dashboard project for the first
time, there are several rules of thumb you should follow
at the project’s outset.

First, as with any project, you will need to define team
roles and lay the groundwork for how the project life
cycle will work. At the same time, you will need to

Sophisticated user interfaces

are great, but in the end, it’s

really about the data. Ensure that

everyone is in agreement about

how to define the data from a

business point of view.

24 BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

identify and engage all stakeholders and ensure both
groups agree on expected outcomes.

It is unlikely that you will be working on a dashboard
project without a business case behind it, but getting a
request from the business and truly engaging users as
partners are two very different things. Although it can
be easy to take orders and make assumptions, keeping
the key business partners involved throughout the entire
project life cycle, and beyond, is absolutely essential.

Finally, you will need some vital information before you
begin. Some questions are obvious from a technical point
of view. What are the data sources? Will data be stored
separately? What tools will be used? What environment(s)
must be built? Other questions are just as vital, but may
not be so obvious. For example, is the project feasible,
especially as an initial effort?

We recommend you limit the scope of an initial
dashboard to a simple, straightforward first effort that
has high business value. This way, a quick win is more
possible, success can be attained early, and business trust
will be earned as you “learn the ropes.”

You will also need to be sure that the project is appropri-
ate for a dashboard or other visualizations. For example,
if the business primarily wants to track how hundreds
of their individual workers are performing, a dashboard
is likely not the right vehicle. However, if they want to
track how their offices are performing over a period of
time, using standard, well-known measures within the
company, then a dashboard may be the best option. (You
can still consider getting to the individuals’ detail, which
we’ll discuss shortly.)

The main lesson here, and throughout the early phases of
your project, is to ask questions and keep on asking them!
If something does not make sense or seems impossible,
work with business users until you reach a mutually
satisfactory agreement.

Once the project looks possible, list all your assump-
tions—whether business related, technical, or process/
project based. You’ll need this list to build an order-of-
magnitude estimate, define the technical space you will
be working within, and help business users understand
their role during the project (and how crucial it is).
Having everything in order even before detailed require-
ments are determined will give both you and business
users confidence. After all, before you start involving
them in detailed requirements meetings, they’re going to
want some idea about when to expect a finished product.

Finally, as you devise this plan, treat the dashboard as
a full-blown application. Although the dashboard is
built in the business intelligence space, it has both the
complexity of a dynamic user interface (with the myriad
possibilities of errors on click events), as well as the need
for absolutely exact, gold-standard data. Both the data
and the functionality will need to be tested thoroughly,
as if you were developing a transactional application. If
you release the slickest, most attractive dashboard your
business has ever seen but the data is wrong or a button
doesn’t work, user confidence will quickly erode. Your
dashboard may be pretty—pretty meaningless.

Consider the metrics and aggregations needed and what
types of structures will be required to support your
project. Depending on your company’s standards, you
might be using denormalized tables, dimensional tables
in a warehouse (or a combination of these), an integra-
tion of detailed and aggregated data, OLAP cubes, or
many other possible sources and targets. As with any BI
solution, you need to choose the appropriate data model.

Limit the scope of an initial

dashboard to a simple,

straightforward first effort that

has high business value.

prAcTIcAl DAShboArD DevelopmenT

25BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

The point here is that performance is paramount for
user adoption.

Document and agree upon functional requirements and
data definitions while offering the flexibility of iterative
testing and tweaking that a business intelligence solution
should provide. It is critical to lock down the logic
behind the displayed metrics early in the project. If that
changes or is vague to everyone, there is little chance
you’ll deliver a successful dashboard.

gathering requirements
Involving business users in your work is crucial—and
most clearly needed—early in a project, especially during
requirements gathering and scoping. You may need to
remind yourself to keep your business partners actively
involved, because it’s vital to your project’s success!

Multiple meetings will certainly be necessary, but make
sure to keep users actively engaged via various methods,
including whiteboarding at first, dashboard prototyping
later, and sharing early data results. This will not only
help hone the requirements, but also allow business users

to feel they are truly partnering on the project. This will
ensure that they know and trust what they will be getting.

In addition, the entire development team should be
involved from inception through implementation to
ensure nothing gets lost in translation through the work.
See Figure 1 for a gauge of both business and technical
involvement through a general project life cycle (regard-
less of the specific methodology used).

The following best practices can help you avoid pitfalls
during requirements gathering, even when the relation-
ship with the business is good.

Know your user. It is possible that your business partner
may represent only one part of the larger group using
the dashboard, or may be assigned to a project and may
not be an ultimate end user at all. Some users may have
different business needs from your primary business
partner. Make sure that you define all the groups of users
who will have access to the dashboard, and ensure all of
their voices are heard. This is not as easy as it sounds, but
is worth the effort.

Scope

Data requirem
ents

Data and dashboard design

Build and UI update

User testing

Im
plem

ent and change nav

Architects/BI CoE/DBA
Testing team
Developers
Analysts (technical)
Business champion/SME
Business sponsor

Figure 1. both business users and technical staff should be involved throughout a project’s life cycle.

prAcTIcAl DAShboArD DevelopmenT

Dashboard Implementation Effort by Role and Phase

26 BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

Define a use case for every component you build. There is
no point in creating a dashboard component unless
there is a direct use for it that can be easily defined and
documented. Documenting the requirements is crucial
to ensure business users get what they have asked for and
so developers and testers have a clear guide about what
they must build. You want to ensure that the use cases,
and the data shown, will stay meaningful over time for
each component; it is not a good idea to introduce new
or rarely used metrics with a dashboard solution. Finally,
require sign-off for all use cases, business requirements,
and scope documentation you create. The scope should
be limited to the business metrics and granularity of
the data at this stage; visualization requirements can be
developed later.

Know your data sources and plan your approach. You must
understand both where the data initially resides and,
if you use an extract-transform-load (ETL) or similar
process, where it will eventually reside. If storing the
data, you will need to know how it should be stored, how
long the data will need to be available for access, and how
often it needs to be refreshed. Especially if using ETL,
three-quarters of your work will be spent on the analysis,
load build and testing, and validation of the data. Even
without ETL, our experience is that the majority of the
time should be spent working with the data rather than
building the front end. Given the visual nature of dash-
boards, it is easy to assume that the bulk of your work is
spent building attractive, user-friendly interfaces. This
is simply not the case with successful implementations,
especially when so many easy-to-implement dashboard
tool suites are available.

Include only trusted, known metrics whenever possible.
Exceptions may arise, but if metrics are well known, the
exceptions will be much easier to validate. The sources of
the data must also be trusted, and business users should
be included in selecting data sources.

Know your refresh rate. Will the dashboard be loaded
monthly, weekly, daily, hourly, or a combination of
these frequencies? The fundamental dashboard design
approach will depend on your answer to this question.
Use cases will drive your design. Make sure you have
thorough discussions about what is really needed versus
what would be nice to have, because the more often the
dashboard will be refreshed, the more support (and cost)
it will require after rollout.

Identify all filters and selections. The earlier in the project’s
life you can do this, the better. This information has a
major influence on your dashboard design and will affect
decisions about performance and capacity. If a large
combination of multi-select filters can be selected for one
component, there will be a multitude of data combina-
tions to validate and possibly many thousands of rows
to be stored. Technologists can be tempted to impress
their business partners, but be careful not to promise
something that is not scalable or sustainable.

Understand what levels of aggregation and detail are required.
An early requirements exercise should involve the filters
and dimensions that will be used as well as how they
should be aggregated. Time periods are a common
dimension as are office or geographical territories. On
the flip side, sophisticated business users will inevitably
want to know the details behind what is driving their
trend or that one outlier metric. Not having a method of
either drilling down to (or otherwise easily accessing) the
detail behind the aggregation will frustrate users after
the post-implementation honeymoon period has ended.
Determining aggregation/detail needs should be part
of the discussions during requirements gathering, but
remember to balance your requirements with develop-
ment difficulty and desired timelines. If detailed data is
provided, it should be accessed directly via the dashboard,

Define all the groups of users

who will have access to the

dashboard, and ensure all of

their voices are heard.

prAcTIcAl DAShboArD DevelopmenT

27BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

whether through sub-reports or drill-down capabilities in
the components themselves, depending on your tool set.

Identify how much history you need. Some graphical trends
will require year-over-year comparisons. Beyond that, it
may be worth considering how long any data that no
longer appears on the dashboard should be retained.
If it does need to be retained for compliance or other
purposes, an archival strategy should be considered, or
possibly a view built on top of the base data. The more
the dashboard can be limited to querying only the data it
needs to display, the better it will perform.

Define the data testing and validation process. It is never
too early to address how you will ensure data quality
through a validation process. Defining specific responsi-
bilities and expectations, and what methods will be used
for validation, should happen even before design. This
will also ensure that business users will be ready when
they are asked to begin testing. The validity of the data
is the most critical factor in the dashboard’s success and
continued use.

Integrate business users. There are several ways to involve
business users in requirements gathering and refinement
besides letting them dictate while you take notes. These
options include:

 ■ Prototype early and often. Prototyping can start with
simple whiteboard exercises, and many dashboard
tools now lend themselves to quick prototyping
so business users can see and play with something
similar to the final product deliverable. This hands-on
method is excellent for rooting out requirements gaps,
although it should not replace formal documentation.

 ■ Use real data wherever possible when prototyping to
give business users a better context. It also helps you to
identify and correct data issues early.

 ■ Integrate developers. Requirements gathering should
not be done solely by analysts. If there are separate
individuals responsible for coding, they must be
involved at this stage so they truly understand the
value and meaning of what they will build.

 ■ Set expectations for production support. Agree upon
a process for communication of user questions or any
defects users discover. Depending on the user, this can
be done many ways, although users at the executive
level will likely prefer a direct communication path
with the team’s manager(s). Additional suggestions
appear in the post-implementation section later in this
article.

 ■ Define milestone deliverables. Regardless of the
software development methodology you use, defining
milestone deliverables is critical for instilling and
retaining business confidence in the project. It is also
necessary to ensure the development team is progressing
as expected.

Milestone due dates should be communicated early
and deadlines met. If a deadline is at risk of being
missed, share this information (as well as the reasons
for the problem and the recommended course of
action) with business users so new dates and dead-
lines can be agreed upon or so the team can remove
items from the project scope or adjust resource levels
and assignments.

An early requirements exercise

should involve the filters and

dimensions that will be used as well

as how they should be aggregated.

prAcTIcAl DAShboArD DevelopmenT

28 BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

Required deliverables from the business requirements-
gathering phase may include:

 ■ Scope lockdown, with documentation of what is in
scope and out of scope.

 ■ Final prototype with business sign-off. (Note: This
remains a working prototype, and all team members
must understand and agree that the design may
change later in the project if practical.) The highest-
level sponsor of the project should be part of this
sign-off, as well as further sign-offs of the actual
product prior to rollout.

 ■ Detailed requirements definitions, including images
from the prototype. Such documents can tie the
business definitions of the metrics to the way they will
be displayed. Such a connection will bring clarity both
to the business client and to the developers/analysts
building the solution.

 ■ Technical conceptual design. This high-level docu-
ment defines all data sources and targets, what delivery
mechanisms are being used, and the general business
use case(s) for the dashboard.

Designing and Building the Dashboard:
Soup to Nuts
When dashboard design has begun, all layers should
be considered in relation to one other. For example, if
the dashboard will be connected to aggregated tables
designed for performance, those tables, the way they are
loaded (or otherwise populated), and any performance

and capacity concerns should be considered. This is just
as important as designing the dashboard functionality.

In general, the dashboard design should:

 ■ Ensure a single, consistent view of the data. This can
apply to the visual look and feel as well as how often
the components on a screen are refreshed. The user
should not have to think about how to interpret the
dashboard; the data presentation should be clear
and intuitive.

 ■ Keep everything in one place. If detailed data or supple-
mental reports are needed, use the dashboard like a
portal or ensure a centralized interface keeps the data
logically consolidated. Also, make sure the same data
source is used for both detailed and aggregated data
on the dashboard.

 Keep in mind, however, that business users may expect
that a snapshot of the dashboard will not change. For
example, a monthly metric could possibly vary slightly
in the source data, but re-querying every time for the
dashboard view with different results could erode
confidence and even skew expected trends. Have a
conversation with business users early on to discuss
such scenarios and determine whether storing point-
in-time dashboard snapshots will be required.

 ■ Understand the usage scenario. Knowing the size of the
user base, as well as the types of users and when they
will be accessing the dashboard, can drive design. You
should understand the usage volumetrics early in your
project and plan accordingly. You must also ensure
that any maintenance windows do not conflict with
peak-time use. Environment sizing, capacity, and
performance will all be critical to ensure a stable tool.

 ■ Address multiple environments for development. If your
environment has the necessary capacity, build develop-
ment, test, and production environments. It’s worth it.

Defining milestone deliverables

is critical for instilling and retaining

business confidence in the project.

prAcTIcAl DAShboArD DevelopmenT

29BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

 ■ Plan to validate data accuracy as early as possible, and
ensure your design and project plan allow this. To avoid
rework, it is crucial to make every effort to get the
data perfect and acquire sign-off in a lower database
environment during user testing. This will ensure
that the data acquisition process is free of bugs. At the
same time, ensure that you validate using data from
the production source system(s), because the data
will be well defined and likely have an independent
method of validation.

 ■ Roll out with historical data available. Plan on migrating
all validated data to production tables along with
the rest of the code. Implementing a dashboard with
predefined history and trends will ensure a great first
impression and enhance user confidence.

In addition to these areas of focus, consider several
design best practices for both database/data quality and
dashboard interfaces.

Database-Level Best Practices
Ideally, your dashboard will be running in a stable
database environment. This environment may be man-
aged by your team or may be the responsibility of another
area of your company. Either way, your dashboard is
meant to provide data for quick and meaningful analysis,
so treating the data and the tables in which it resides is
critical. Some best practices include:

 ■ Using ETL or other data acquisition methods to
regularly write to a highly aggregated, denormalized
table. This will ensure optimal performance, as
dashboard click events need to be fast. A good goal
is to ensure that no click event takes more than three
seconds to return data to the dashboard.

 ■ Use predefined and well-maintained dimensional
tables wherever possible. This ensures consistency and
eliminates redundant data structures.

 ■ Store the data using IDs, and reference static code or
dimensional tables wherever possible. This way, if a
business rule changes, only one table must be modi-
fied, and no data has been persisted to a table that is
now outdated.

 ■ Design and model the data so the front end can
dynamically handle any business changes at the
source level. This eliminates the need to update the
code every time business users make a change, and
maintenance costs will be much lower. The develop-
ment team will then be able to work on exciting new
projects rather than just keeping the lights on.

 ■ Detailed data should be kept separate and not reloaded
anywhere, if possible. However, it should be available
in the same database so the aggregate and related
detail can easily coexist.

 ■ Unless absolutely necessary, do not store calculated
values or any data that is prone to business rule
changes. If persisted data becomes incorrect, it can
be a huge effort to re-state it. Calculated fields can be
done quickly using front-end queries or formulas (if
designed properly).

 ■ Create a data archival strategy based on business
needs for data retention and how much history the
dashboard needs to show.

 ■ Ensure that any queries from the dashboard to the
tables are well-tuned and that they will continue to
run quickly over time.

 ■ Likewise, ensure that any middle-tier environment
used for running the dashboard queries is highly stable
and can take advantage of any caching opportunities
to enhance performance.

Dashboard-Level Best Practices
Spending a great deal of time on getting the dashboard
data modeled, stored, automated, and correct will, of

prAcTIcAl DAShboArD DevelopmenT

30 BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

course, all be for naught if the dashboard front end is
not intuitive, does not perform, or otherwise does not
have high availability. To address this, take these steps
throughout the life cycle:

 ■ Check the dashboard usability by bringing in end
users who were not involved in the initial project.
Observe how quickly and easily they can meet their
objectives, and remove all bias as you watch. You will
need to plan for their participation well in advance,
and this work should be done early in your testing
(make sure to have production data at this point) so
there is time to react to their input.

 ■ Within the dashboard code, implement dynamic
server configuration so all dashboard components can
automatically reference the proper environment for
the database, middle tier, and front end itself. This
reduces reliance on hard-coded server names and can
prevent deployments from accidentally pointing to the
wrong location.

 ■ Users will want to use Excel regardless of how
well-designed your dashboard is. Make sure an Excel
export option is available for all the data shown on the
dashboard and any included reports.

 ■ For every dashboard component, include a label
referencing the specific data source as well as the data
refresh date. This simple step resolves confusion and
will greatly reduce the number of support questions
you receive post-rollout.

 ■ Do everything possible to avoid hard-coding filters,
axes, or any other front-end components that change
based on predictably changing business. The data and
the front end both need to be flexible and dynamic
enough to display information based on a changing
business. The dashboard should not have to display
invalid or stale data for a time period while the devel-
opment team scrambles to implement a production fix.
That would inevitably lead to a drop in user adoption
and reduced confidence in the dashboard’s validity.

 ■ Test plans should include scripts for testing the overall
dashboard load time as well as specific load times for
all click events. This will afford the time needed to
tweak code for optimal performance.

 ■ Near the end of testing, simulate a performance load
test whether you have automated tools to do this
or you have to do it manually with multiple users.
The purpose is to ensure no part of the underlying
infrastructure has an issue with load.

 ■ Test boundary conditions to avoid unforeseen defects
later in the project’s life. For example, what happens
when a multi-year trend goes into a new year? Will the
x-axis continue to sort properly? Define all conditions
like this and find a way to test each one.

running the project (and Subsequent projects)
Considering the myriad of complexities involved in
implementing a dashboard, from ensuring correct data
is available when expected, to designing a usable and
innovative front end, to working with the business
through multiple and complex requirements, costs can be
high and timelines can easily be missed if the project is
not carefully managed.

The following procedures will help ensure a successful
dashboard release, all in the context of the best practices
explained so far:

Create and use an estimating model. The model should
cover all aspects of a dashboard release (from data to user
interface), all the technical roles and resources that will
be involved, and be sufficiently detailed to break down
time in hours by both phase and resource type. A model

Do not store calculated values

or any data that is prone to

business rule changes.

prAcTIcAl DAShboArD DevelopmenT

31BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

that can be defined by selecting answers to requirements-
based questions will be the easiest for your analysts to
use, such as: How many metrics and components will be
displayed? How many data sources will be used? Does
data for validation exist?

The model should be refined after each large project by
entering the answers to these questions and determining
how closely the model’s hours match those actually spent.

Data validation is your top priority. Plan and allocate the time
with your business partners and understand what data
sources you will use for validation. If there is no indepen-
dent source, you and your business users must reach an
agreement about how validation will be performed.

Share real data as soon as it becomes available and the
team has reasonable confidence in its accuracy. There
is no reason to wait to share data, regardless of how
early in the process this occurs, because the earlier data
defects are identified and resolved, the more smoothly the
subsequent processes will go.

As we’ve mentioned, we recommend you implement your
project with historical data loaded. If this is planned,
ensure that business users are aware and secure their
pledge to spend adequate time comparing and validating
the historical data.

Define phases of work and identify key deliverables for each.
Regardless of the development methodology your depart-
ment uses, you must align milestones to specific dates to
ensure the project does not get out of control and to keep
business users confident in your progress.

Depending on your business client and their expectations,
you may need to blend agile and waterfall methods.
Although this will not satisfy ardent practitioners of the
methodologies, a blended approach can allow for the
iterative testing and discovery that this type of work
requires while ensuring adherence to a strict timeline,
which a release of this complexity also requires.

Implementations are complex, so make a detailed plan. The
manager or lead of the project should define all the steps
needed, assign dates and responsible parties, and build
a T-minus document/project scorecard. These tasks
should be completed during the initial stages of the work,
soon after any intake approval and/or slotting, and the
document should be reviewed with the entire team at least
once a week to ensure the project is consistently on track.

Escalate all identified issues and risks early and often. If your
department already has a process for bringing issues and
risks into the open and to the attention of those who can
mitigate them, use it. Otherwise, create your own process
for the project. Enlist all stakeholders and technology
leaders for support, and do this proactively.

Review, review, review. Plan multiple design and code
reviews, and assume at least a draft and final review
will be needed for each major piece of work. Devote
ample time to design review, because waiting until the
dashboard is built may make recovery impossible if a
fundamental design flaw has gone unnoticed. Formalize
a method for tracking and implementing all changes
identified during reviews.

Keep the development team engaged. For example, if the
development team includes offshore resources, record
key meetings using Webinar technology. This can serve
as both knowledge transfer and training material later.
Make sure everyone knows about the recording and
ensure that no legal or compliance issues will arise.

Even though your work may be completed in phases,
dashboards can rarely be efficiently delivered if a “factory”

Depending on your business

client and their expectations,

you may need to blend agile

and waterfall methods.

prAcTIcAl DAShboArD DevelopmenT

32 BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

approach is used (in which requirements are passed to
designers, and designs passed to builders, without every-
one being involved). When a developer is far removed
from business users working on a dashboard project, this
can lead to project failure.

Implement a formal user-acceptance testing process. Once
the development team has completed all internal testing
of data and functionality, plan time (we recommend two
to three weeks) to allow the business team to complete
their tests. Testing should include as much data valida-
tion as possible. We recommend you formally kick off the
testing phase with business users and employ a docu-
mented process for submitting defects and questions to
the development team. Make this easy for your business
partners. They should focus on testing, not on how to
submit their test results.

Require sponsor/stakeholder approval before rollout. This will
give your dashboard legitimacy to the ultimate end users
and is invaluable for those early weeks when adoption
may hang in the balance. This approval should include
a presentation during which the sponsor can view and
provide feedback about the dashboard, with sufficient
time allotted to make adjustments. As mentioned,
we recommend you conduct sponsor reviews of the
dashboard throughout the project, including during
prototype design.

post-Implementation (You’re never really Done)
After the dashboard is implemented, team members are
often tempted to relax. There may also be new projects
demanding focus.

Do not become distracted or complacent, because
there are certain post-implementation steps that will
ensure both that the few critical months after rollout
go smoothly and that the development team does not
become bogged down by production support or answer-
ing business questions.

First, build post-implementation work into the initial
plan. Sustainability and support should be factors in
scope and technical design.

For larger rollouts, consider best practices for the sponsor-
ing business group and the technology team to handle
presentations. This way, both business and technical
questions can be answered accurately, all key partners are
included, and accountability is shared.

Post-rollout sponsorship and change navigation
coordination are crucial. The business unit will likely be
responsible for communications and training, but the
technology team can and should influence this.

If possible, ensure you have a method to collect usage
metrics. If you can identify usage by user ID, that is even
better because delineation between business and technol-
ogy usage can be made and groups can be identified for
training if usage is lower than expected.

The development team can suggest and implement
innovative ways to communicate with users:

 ■ Add a scrolling marquee to the dashboard or use some
other technique for instantly communicating impor-
tant messages. This component should be database
driven, and the technical support team should have
write access into a table separate from the dashboard’s
main tables. This way, announcements such as
planned downtime or key data load dates can be easily
delivered to all users.

 ■ Add an e-mail button that goes directly to the
dashboard support team. This may not be a popular
choice for all technology teams, but dashboards are

Create an internal process

for ticket and defect handling,

and implement bug fixes in

small, bundled releases.

prAcTIcAl DAShboArD DevelopmenT

33BUSINESS INTELLIGENCE Journal • vol. 17, no. 4

often used by upper-level managers who have no
desire to call in tickets through a service center. They
prefer direct and immediate access to the group that
can resolve a problem.

 ■ Create an internal process for ticket and defect
handling, and implement bug fixes in small, bundled
releases. Communicate the fixes to all users.

 ■ Build context-sensitive help directly into the
dashboard. Dynamically displayed help can greatly
increase usability as well as cut down on support
questions. Help text should discuss how to use
the dashboard components, but should primarily
emphasize the business rules and definitions of the
metrics themselves. The dashboard should be built
intuitively enough so users are not confused about its
use. A document attachment is a viable alternative to
context-sensitive help depending on the user base and
what would best suit them.

Continuously funnel large and small enhancements into
subsequent releases to maintain momentum. No matter
how well you succeed with the initial deployment, there
will certainly be areas for improvement.

Be open to user suggestions, even regarding component
design or more traditionally technical items. Business end
users are often great innovators you can learn from, and
with advancements in Excel and business intelligence
tools, they are becoming more technically skilled.

Learn from each deployment, and continue improving
and documenting your own best practices.

Summary
Dashboards can be incredibly useful tools for business
users, offering at-a-glance indicators of key company
measures, the ability to view trends over time, and filter-
ing capabilities to drill down to areas that could impact
key business objectives. Dashboards can offer great visual
flair and a quick method to identify and understand a
positive or negative business impact.

However, implementing dashboards is not as magical as
a flashy user interface might make it seem. The accuracy
of the data, timeliness of its updates, and performance of
user interactions are all as important as the visual design.
To successfully implement all of these things, careful
planning is required, as is a strong partnership between
business sponsors and the entire development team.

The dashboard should be easy to use but can be difficult
to develop. By utilizing the methods we’ve discussed, you
can improve both the process and results of dashboard
development at your enterprise. ■

prAcTIcAl DAShboArD DevelopmenT

Copyright of Business Intelligence Journal is the property of Data Warehousing Institute and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

