
88 CommuniCations of the aCm | auguST 2011 | vol. 54 | no. 8

review articles

B Usiness intelliGence (Bi) sOFtware is a collection
of decision support technologies for the enterprise
aimed at enabling knowledge workers such as
executives, managers, and analysts to make better
and faster decisions. The past two decades have seen
explosive growth, both in the number of products
and services offered and in the adoption of these
technologies by industry. This growth has been
fueled by the declining cost of acquiring and storing
very large amounts of data arising from sources
such as customer transactions in banking, retail
as well as in e-businesses, RFID tags for inventory
tracking, email, query logs for Web sites, blogs, and
product reviews. Enterprises today collect data at a
finer granularity, which is therefore of much larger
volume. Businesses are leveraging their data asset

aggressively by deploying and experi-
menting with more sophisticated data
analysis techniques to drive business
decisions and deliver new functional-
ity such as personalized offers and ser-
vices to customers. Today, it is difficult
to find a successful enterprise that
has not leveraged BI technology for
its business. For example, BI technol-
ogy is used in manufacturing for or-
der shipment and customer support,
in retail for user profiling to target
grocery coupons during checkout, in
financial services for claims analysis
and fraud detection, in transportation

an overview
of Business
intelligence
technology

Doi:10.1145/1978542.1978562

BI technologies are essential to running
today’s businesses and this technology
is going through sea changes.

BY suRaJit ChauDhuRi, umeshWaR DaYaL,
anD ViVeK naRasaYYa

auguST 2011 | vol. 54 | no. 8 | CommuniCations of the aCm 89

for fleet management, in telecommu-
nications for identifying reasons for
customer churn, in utilities for power
usage analysis, and health care for
outcomes analysis.

A typical architecture for support-
ing BI within an enterprise is shown in
Figure 1 (the shaded boxes are technol-
ogy that we focus on in this article). The
data over which BI tasks are performed
often comes from different sources—
typically from multiple operational da-
tabases across departments within the
organization, as well as external ven-
dors. Different sources contain data

of varying quality, use inconsistent
representations, codes, and formats,
which have to be reconciled. Thus the
problems of integrating, cleansing,
and standardizing data in preparation
for BI tasks can be rather challenging.
Efficient data loading is imperative for
BI. Moreover, BI tasks usually need to
be performed incrementally as new
data arrives, for example, last month’s
sales data. This makes efficient and
scalable data loading and refresh ca-
pabilities imperative for enterprise BI.
These back-end technologies for pre-
paring the data for BI are collectively

 key insights

 the cost of data acquisition and data
storage has declined significantly. this
has increased the appetite of businesses
to acquire very large volumes in order to
extract as much competitive advantage
from it as possible.

 new massively parallel data architec-
tures and analytic tools go beyond
traditional parallel sQL data warehouses
and oLaP engines.

 the need to shorten the time lag
between data acquisition and decision
making is spurring innovations in
business intelligence technologies.

90 CommuniCations of the aCm | auguST 2011 | vol. 54 | no. 8

review articles

referred to as Extract-Transform-Load
(ETL) tools. Increasingly there is a need
to support BI tasks in near real time,
that is, make business decisions based
on the operational data itself. Special-
ized engines referred to as Complex
Event Processing (CEP) engines have
emerged to support such scenarios.

The data over which BI tasks are
performed is typically loaded into a
repository called the data warehouse
that is managed by one or more data
warehouse servers. A popular choice of
engines for storing and querying ware-
house data is relational database man-
agement systems (RDBMS). Over the
past two decades, several data struc-
tures, optimizations, and query pro-
cessing techniques have been devel-
oped primarily for executing complex
SQL queries over large volumes of da-
ta—a key requirement for BI. An exam-
ple of such an ad hoc SQL query is: find
customers who have placed an order
during the past quarter whose amount
exceeds the average order amount by at
least 50%. Large data warehouses typi-
cally deploy parallel RDBMS engines so
that SQL queries can be executed over
large volumes of data with low latency.

As more data is born digital, there is
increasing desire to architect low-cost
data platforms that can support much
larger data volume than that tradition-
ally handled by RDBMSs. This is often
described as the “Big Data” challenge.
Driven by this goal, engines based on
the MapReduce9 paradigm—originally
built for analyzing Web documents
and Web search query logs—are now
being targeted for enterprise analyt-

ics. Such engines are currently being
extended to support complex SQL-like
queries essential for traditional enter-
prise data warehousing scenarios.

Data warehouse servers are comple-
mented by a set of mid-tier servers that
provide specialized functionality for
different BI scenarios. Online analytic
processing (OLAP) servers efficiently
expose the multidimensional view of
data to applications or users and en-
able the common BI operations such
as filtering, aggregation, drill-down
and pivoting. In addition to tradition-
al OLAP servers, newer “in-memory
BI” engines are appearing that exploit
today’s large main memory sizes to
dramatically improve performance of
multidimensional queries. Reporting
servers enable definition, efficient ex-
ecution and rendering of reports—for
example, report total sales by region
for this year and compare with sales
from last year. The increasing availabil-
ity and importance of text data such as
product reviews, email, and call center
transcripts for BI brings new challeng-
es. Enterprise search engines support
the keyword search paradigm over text
and structured data in the warehouse
(for example, find email messages,
documents, history of purchases and
support calls related to a particular
customer), and have become a valuable
tool for BI over the past decade. Data
mining engines enable in-depth analy-
sis of data that goes well beyond what
is offered by OLAP or reporting servers,
and provides the ability to build predic-
tive models to help answer questions
such as: which existing customers are

likely to respond to my upcoming cata-
log mailing campaign? Text analytic en-
gines can analyze large amounts of text
data (for example, survey responses or
comments from customers) and ex-
tract valuable information that would
otherwise require significant manual
effort, for example, which products are
mentioned in the survey responses and
the topics that are frequently discussed
in connection with those products.

There are several popular front-
end applications through which users
perform BI tasks: spreadsheets, en-
terprise portals for searching, perfor-
mance management applications that
enable decision makers to track key
performance indicators of the busi-
ness using visual dashboards, tools
that allow users to pose ad hoc que-
ries, viewers for data mining models,
and so on. Rapid, ad hoc visualization
of data can enable dynamic explora-
tion of patterns, outliers and help un-
cover relevant facts for BI.

In addition, there are other BI tech-
nologies (not shown in Figure 1) such
as Web analytics, which enables under-
standing of how visitors to a compa-
ny’s Web site interact with the pages;
for example which landing pages are
likely to encourage the visitor to make
a purchase. Likewise, vertical pack-
aged applications such as customer
relationship management (CRM) are
widely used. These applications often
support built-in analytics, for exam-
ple, a CRM application might provide
functionality to segment customers
into those most likely and least likely
to repurchase a particular product.

figure 1. typical business intelligence architecture.

external data
Sources

Data
sources

Data movement,
streaming engines

Data warehouse
servers

mid-tier
servers

front-end
applications

operational
databases

extract Transform
load (eTl)

olaP
Server

data mining,
text analytic

engines

enterprise
search engine

Search

Spreadsheet

dashboard

ad hoc
query

reporting
Server

Complex event
Processing engine

relational
dBMS

Mapreduce
engine

review articles

auguST 2011 | vol. 54 | no. 8 | CommuniCations of the aCm 91

today, it is difficult
to find a successful
enterprise that
has not leveraged
Bi technology for
their business.

Another nascent but important area is
mobile BI that presents opportunities
for enabling novel and rich BI applica-
tions for knowledge workers on mo-
bile devices.

In this short article, we are not
able to provide comprehensive cover-
age of all technologies used in BI (see
Chaudhuri et al.5 for additional details
on some of these technologies). We
therefore chose to focus on technology
where research can play, or has his-
torically played, an important role. In
some instances, these technologies are
mature but challenging research prob-
lems still remain—for example, data
storage, OLAP servers, RDBMSs, and
ETL tools. In other instances, the tech-
nology is relatively new with several
open research challenges, for example,
MapReduce engines, near real-time BI,
enterprise search, data mining and text
analytics, cloud data services.

Data storage
Access structures. Decision support
queries require operations such as
filtering, join, and aggregation. To ef-
ficiently support these operations,
special data structures (not typically
required for OLTP queries) have been
developed in RDBMSs, described here.
Access structures used in specialized
OLAP engines that do not use RDBMSs
are discussed later.

Index structures. An index enables
associative access based on values of a
particular column. When a query has
one or more filter conditions, the se-
lectivities of these conditions can be
exploited through index scans (for ex-
ample, an index on the StoreId column
can help retrieve all sales for StoreId =
23) and index intersection (when mul-
tiple conditions exist). These opera-
tions can significantly reduce, and in
some cases eliminate, the need to ac-
cess the base tables, for example, when
the index itself contains all columns
required to answer the query. Bitmap
indexes support efficient index opera-
tions such as union and intersection. A
bitmap index on a column uses one bit
per record for each value in the domain
of that column. To process a query of
the form column1 = val1 AND column2 =
val2 using bitmap indexes, we identify
the qualifying records by taking the bit-
wise AND of the respective bit vectors.
While such representations are very

effective for low cardinality domains
(for example, gender), they can also be
used for higher cardinality domains
using bitmap compression.

Materialized views. Reporting que-
ries often require summary data, for
example, aggregate sales of the most
recent quarter and the current fiscal
year. Hence, precomputing and mate-
rializing summary data (also referred
to as materialized views) can help dra-
matically accelerate many decision
support queries. The greatest strength
of a materialized view is its ability to
specifically target certain queries by ef-
fectively caching their results. However
this very strength also can limit its ap-
plicability, that is, for a slightly differ-
ent query it may not be possible to use
the materialized view to answer that
query. This is in contrast to an index,
which is a much more general struc-
ture, but whose impact on query per-
formance may not be as dramatic as
a materialized view. Typically, a good
physical design contains a judicious
mix of indexes and materialized views.

Partitioning. Data partitioning can
be used to improve both performance
(discussed later) and manageability.
Partitioning allows tables and indexes
to be divided into smaller, more man-
ageable units. Database maintenance
operations such as loading and backup
can be performed on partitions rather
than an entire table or index. The com-
mon types of partitioning supported
today are hash and range. Hybrid
schemes that first partition by range
followed by hash partitioning within
each range partition are also common.

Column-oriented storage. Tradition-
al relational commercial database en-
gines store data in a row-oriented man-
ner, that is, the values of all columns
for a given row in a table are stored
contiguously. The Sybase IQ product30
pioneered the use of column-oriented
storage, where all values of a particular
column are stored contiguously. This
approach optimizes for “read-mostly”
workloads of ad hoc queries. The col-
umn-oriented representation has two
advantages. First, significantly greater
data compression is possible than in
a row-oriented store since data values
within a column are typically much
more repetitive than across columns.
Second, only the columns accessed in
the query need to be scanned. In con-

92 CommuniCations of the aCm | auguST 2011 | vol. 54 | no. 8

review articles

trast, in a row-oriented store, it is not
easy to skip columns that are not ac-
cessed in the query. Together, this can
result in reduced time for scanning
large tables.

Finally, we note that in the past de-
cade, major commercial database sys-
tems have added automated physical
design tools that can assist database ad-
ministrators (DBAs) in choosing appro-
priate access structures (see Chaudhuri
and Narasayya7 for an overview) based
on workload information, such as que-
ries and updates executed on the sys-
tem, and constraints, for example, total
storage allotted to access structures.

Data Compression can have signifi-
cant benefits for large data warehouses.
Compression can reduce the amount
of data that needs to be scanned, and
hence the I/O cost of the query. Second,
since compression reduces the amount
of storage required for a database, it can
also lower storage and backup costs.
A third benefit is that compression ef-
fectively increases the amount of data
that can be cached in memory since the
pages can be kept in compressed form,
and decompressed only on demand.
Fourth, certain common query opera-
tions (for example, equality conditions,
duplicate elimination) can often be
performed on the compressed data it-
self without having to decompress the
data. Finally, compressing data that
is transferred over the network effec-
tively increases the available network
bandwidth. This is important for paral-
lel DBMSs where data must be moved
across nodes. Data compression plays
a key role not just in relational DBMSs,
but also in other specialized engines,
for example, in OLAP.

There are different compression
techniques used in relational DBMSs.
Null suppression leverages the fact that
several commonly used data types in
DBMSs are fixed length (for example,
int, bigint, datetime, money), and sig-
nificant compression is possible if they
are treated as variable length for stor-
age purposes. Only the non-null part
of the value is stored along with the
actual length of the value. Dictionary
compression identifies repetitive values
in the data and constructs a dictionary
that maps such values to more com-
pact representations. For example, a
column that stores the shipping mode
for an order may contain string values
such as ‘AIR’, ‘SHIP’, ‘TRUCK’. Each
value can be represented using two
bits by mapping them to values 0,1,2
respectively. Finally, unlike compres-
sion schemes in row-oriented stores
where each instance of a value requires
an entry (potentially with fewer bits),
in column-oriented stores other com-
pression techniques such as run-length
encoding (RLE) can become more effec-
tive. In RLE compression, a sequence
of k instances of value v is encoded by
the pair (v,k). RLE is particularly attrac-
tive when long runs of the same value
occur; this can happen for columns
with relatively few distinct values, or
when the column values are sorted.

There are several interesting tech-
nical challenges in data compression.
First, new compression techniques
suitable for large data warehouses and
incurring an acceptable trade-off with
decompression and update costs are
important. Second, even for known
compression techniques important
open problems remain—for example,

for RLE—the choice of sort order of
the table can significantly affect the
amount of compression possible. De-
termining the best sort order to use is
a non-trivial optimization problem.
Finally, the decision of whether to
compress access structures is work-
load dependent. Thus, there is a need
for automated physical design tools to
also recommend which access struc-
tures should be compressed and how
based on workload information.

Query Processing
A popular conceptual model used for
BI tasks is the multidimensional view of
data, as shown in Figure 2. In a multidi-
mensional data model, there is a set of
numeric measures that are the objects
of analysis. Examples of such mea-
sures are sales, budget, revenue, and
inventory. Each of the numeric mea-
sures is associated with a set of dimen-
sions, which provide the context for the
measure. For example, the dimensions
associated with a sale amount can be
the Product, City, and the Date when
the sale was made. Thus, a measure
can be viewed as a value in the multidi-
mensional space of dimensions. Each
dimension is described by a set of attri-
butes, for example, the Product dimen-
sion may consist of the following at-
tributes: the category, industry, model
number, year of its introduction. The
attributes of a dimension may be re-
lated via a hierarchy of relationships.
For example, a product is related to its
category and the industry attributes
through a hierarchical relationship
(Figure 2). Another distinctive feature
of the conceptual model is its stress
on aggregation of measures by one or
more dimensions; for example, com-
puting and ranking the total sales by
each county for each year.

OLAP Servers. Online Analytic pro-
cessing (OLAP) supports operations
such as filtering, aggregation, pivoting,
rollup and drill-down on the multi-
dimensional view of the data. OLAP
servers are implemented using either
a multidimensional storage engine
(MOLAP); a relational DBMS engine
(ROLAP) as the backend; or a hybrid
combination called HOLAP.

MOLAP servers. MOLAP servers di-
rectly support the multidimensional
view of data through a storage engine
that uses the multidimensional array

figure 2. multidimensional data.

…

…
Mar

Country Industry Year

region Category Quarter

date
City Product

Week Month

month

Feb
Jan

Toothpaste

new
York

l.a. Chicago …

Soap

Milk

P
ro

d
u

ct

City

Dimensional hierarchies

review articles

auguST 2011 | vol. 54 | no. 8 | CommuniCations of the aCm 93

abstraction. They typically precom-
pute large data cubes to speed up query
processing. Such an approach has the
advantage of excellent indexing prop-
erties and fast query response times,
but provides relatively poor storage uti-
lization, especially when the data set is
sparse. To better adapt to sparse data
sets, MOLAP servers identify dense and
sparse regions of the data, and store/
index these regions differently. For ex-
ample dense sub-arrays of the cube are
identified and stored in array format,
whereas the sparse regions are com-
pressed and stored separately.

ROLAP servers. In ROLAP, the mul-
tidimensional model and its opera-
tions have to be mapped into relations
and SQL queries. They rely on the data
storage techniques described earlier
to speed up relational query process-
ing. ROLAP servers may also need
to implement functionality not sup-
ported in SQL, for example, extended
aggregate functions such as median,
mode, and time window based moving
average. The database designs used
in ROLAP are optimized for efficiency
in querying and in loading data. Most
ROLAP systems use a star schema to
represent the multidimensional data
model. The database consists of a
single fact table and a single table for
each dimension. Each row in the fact
table consists of a pointer (a.k.a. for-
eign key) to each of the dimensions
that provide its multidimensional
coordinates, and stores the numeric
measures for those coordinates. Each
dimension table consists of columns
that correspond to attributes of the di-
mension. Star schemas do not explic-
itly provide support for attribute hier-
archies. Snowflake schemas (shown in
Figure 3) provide a refinement of star
schemas where the dimensional hier-
archy is explicitly represented by nor-
malizing the dimension tables. This
leads to advantages in maintaining
the dimension tables.

HOLAP servers. The HOLAP archi-
tecture combines ROLAP and MOLAP
by splitting storage of data in a MO-
LAP and a relational store. Splitting
the data can be done in different ways.
One method is to store the detailed
data in a RDBMS as ROLAP servers do,
and precomputing aggregated data in
MOLAP. Another method is to store
more recent data in MOLAP to pro-

vide faster access, and older data in
ROLAP. Since MOLAP performs bet-
ter when the data is reasonably dense
and ROLAP servers perform for sparse
data, Like MOLAP servers, HOLAP
servers also perform density analysis
to identify sparse and dense sub-re-
gions of the multidimensional space.
All major data warehouse vendors to-
day offer OLAP servers (for example,
IBM Cognos,15 Microsoft SQL,17 and
Oracle Hyperion23).

In-memory BI engines. Technol-
ogy trends are providing an opportu-
nity for a new class of OLAP engines
focused on exploiting large main
memory to make response times for
ad-hoc queries interactive. First, the
ratio of time to access data on disk vs.
data in memory is increasing. Second,
with 64-bit operating systems becom-
ing common, very large addressable
memory sizes (for example, 1TB) are
possible. Third, the cost of memory
has dropped significantly, which
makes servers with large amounts of
main memory affordable. Unlike tra-
ditional OLAP servers, in-memory BI
engines (for example, QlikView24) rely
on a different set of techniques for
achieving good performance. First,
since the detailed data is memory
resident they avoid expensive I/Os re-
quired to access data cubes, indexes,
or materialized views. Second, they
use data structures that would not be
suitable for disk-based access, but are
very effective for in-memory access.

For example, consider a query that
computes the total sales for each cus-
tomer in a particular state. When the
data is initially loaded into the system,
the engine can associate pointers from
each state to customers in that state,
and similarly pointers from a cus-
tomer to all the order detail records
for that customer. This allows fast as-
sociative access required to answer
the query quickly, and is reminiscent
of approaches used by object-oriented
databases as well as optimizations in
traditional DBMSs such as join indices.
Third, in-memory BI engines can sig-
nificantly increase the effective data
sizes over which they can operate in
memory by using data organization
techniques such as column-oriented
storage and data compression. In-
memory BI engines are best suited
for read-mostly data without in-place
data updates where new data arrives
primarily in the form of incremental
batch inserts due to data decompres-
sion cost.

Relational Servers. Relational data-
base servers (RDBMSs) have tradition-
ally served as the backend of large data
warehouses. Such data warehouses
need to be able to execute complex
SQL queries as efficiently as possible
against very large databases. The first
key technology needed to achieve this
is query optimization, which takes a
complex query and compiles that query
into an execution plan. To ensure that
the execution plan can scale well to

figure 3. snowflake schema.

orderno
orderdate

order

salesPersoniD
name
City
Quota

salesPerson

DateKey
date
Month

Date

month
Year

month

state

Year

Productno
name
description
Category
unitPrice
Qoh

Product

Categoryname
description

Category

Cityname
State

City
orderno
salesPersoniD
Customerno
DateKey
Cityname
Prodno
Quantity
TotalPrice

orderDetails

Customerno
name
address
City

Customer

94 CommuniCations of the aCm | auguST 2011 | vol. 54 | no. 8

review articles

large databases, data partitioning and
parallel query processing are leveraged
extensively (see Graefe13 for an over-
view of query processing techniques).
We therefore discuss two pieces of key
technology—query optimization and
parallel query processing.

Query optimization technology has
been a key enabler for BI. The query
optimizer is responsible for select-
ing an execution plan for answering
a query. The execution plan is a com-
position of physical operators (such
as Index Scan, Hash Join, Sort) that
when evaluated generates the results
of the query. The performance of a
query crucially depends on the abil-
ity of the optimizer to choose a good
plan from a very large space of alterna-
tives. The difference in execution time
between a good and bad plan for such
complex queries can be several orders
of magnitudes (for example, days in-
stead of minutes). This topic has been
of keen interest in database research
and industry (an overview of the field
appears in Chaudhuri4). Following the
pioneering work done in the System R
optimizer from IBM Research in the
late 1970s, the next major architec-
tural innovation came about a decade
later: extensible optimizers. This al-
lowed system designers to “plug-in”
new rules and extend the capabilities
of the optimizer. For example, a rule
could represent equivalence in rela-
tional algebra (for example, pushing
down an aggregation below join). Ap-
plication of such rules can potentially
transform the execution plan into one
that executes much faster. Extensible
optimizers allowed many important
optimizations developed by indus-
try and research over the years to be
incorporated relatively easily with-
out having to repeatedly modify the
search strategy of the optimizer.

Despite the success of query optimi-
zation and the crucial role it plays in BI,
many fundamental challenges still re-
main. The optimizer needs to address
the inherently difficult problem of esti-
mating the cost of a plan, that is, the to-
tal work (CPU, I/O, among others) done
by the plan. However, constrained by
the requirement to impose only a small
overhead, the optimizer typically uses
limited statistical information such as
histograms describing a column’s data
distribution. Such approximations

of all processors, and can become a
bottleneck. Shared disk systems are
relatively cost effective for small- to
medium-sized data warehouses.

In shared nothing systems (for ex-
ample, Teradata31) data needs to be
distributed across nodes a priori. They
have the potential to scale to much
larger data sizes than shared disk sys-
tems. However, the decision of how to
effectively distribute the data across
nodes is crucial for performance and
scalability. This is important both from
the standpoint of leveraging parallel-
ism, but also to reduce the amount of
data that needs to be transferred over
the network during query processing.
Two key techniques for data distribu-
tion are partitioning and cloning. For
example consider a large database
with the schema shown in Figure 3.
Each of the two large fact tables, Orders
and OrderDetails can be hash parti-
tioned across all nodes on the OrderId
attribute respectively, that is, on the
attribute on which the two tables are
joined. All other dimension tables,
which are relatively small, could be
cloned (replicated) on each node. Now
consider a query that joins Customers,
Orders and OrderDetails. This query can
be processed by issuing one query per
node, each operating on a subset of the
fact data and joining with the entire
dimension table. As a final step, the re-
sults of each of these queries are sent
over the network to a single node that
combines them to produce the final
answer to the query.

Data warehouse appliances. Recently
a new generation of parallel DBMSs
referred to as data warehouse appli-
ances (for example, Netezza19) have ap-
peared. An appliance is an integrated
set of server and storage hardware,
operating system and DBMS software
specifically pre-installed and pre-opti-
mized for data warehousing. These ap-
pliances have gained impetus from the
following trends. First, since DW appli-
ance vendors control the full hardware/
software stack, they can offer the more
attractive one service call model. Sec-
ond, some appliances push part of the
query processing into specialized hard-
ware thereby speeding up queries. For
example, Netezza uses FPGAs (field-
programmable gate arrays) to evaluate
selection and projection operators on
a table in the storage layer itself. For

sometimes result in brittleness since
large inaccuracies can lead to genera-
tion of very poor plans. There has been
research in leveraging feedback from
query execution to overcome errors
made by the query optimizer by observ-
ing actual query execution behavior
(for example, the actual result size of
a query expression), and adjusting the
execution plan if needed. However,
collecting and exploiting feedback at
low overhead is also challenging, and
much more work is needed to realize
the benefits of this approach.

Parallel processing and appliances.
Parallelism plays a significant role in
processing queries over massive da-
tabases. Relational operators such as
selection, projection, join, and aggre-
gation present many opportunities for
parallelism. The basic paradigm is data
parallelism, that is, to apply relational
operators in parallel on disjoint subsets
of data (partitions), and then combine
the results. The article by Dewitt and
Gray10 provides an overview of work in
this area. For several years now, all ma-
jor vendors of database management
systems have offered data partitioning
and parallel query processing technol-
ogy. There are two basic architectures
for parallelism: Shared disk, where each
processor has a private memory but
shares disks with all other processors.
Shared nothing, where each processor
has private memory and disk and is typ-
ically a low-cost commodity machine.
Interestingly, while these architectures
date back about two decades, neither
has yet emerged as a clear winner in the
industry and successful implementa-
tions of both exist today.

In shared disk systems all nodes
have access to the data via shared
storage, so there is no need to a priori
partition the data across nodes as in
the shared nothing approach. During
query processing, there is no need to
move data across nodes. Moreover,
load balancing is relatively simple
since any node can service any re-
quest. However, there are a couple
of issues that can affect scalability of
shared disk systems. First, the nodes
need to communicate in order to en-
sure data consistency. Typically this
is implemented via a distributed lock
manager, which can incur non-trivial
overhead. Second, the network must
support the combined I/O bandwidth

review articles

auguST 2011 | vol. 54 | no. 8 | CommuniCations of the aCm 95

typical decision support queries this
can significantly reduce the amount of
data that needs to be processed in the
DBMS layer.

Distributed Systems using Map-
Reduce Paradigm. Large-scale data
processing engines based on the Map-
Reduce paradigm9 were originally devel-
oped to analyze Web documents, query
logs, and click-through information
for index generation and for improving
Web search quality. Platforms based
on a distributed file system and using
the MapReduce runtime (or its variants
such as Dryad16) have been successfully
deployed on clusters with an order of
magnitude more nodes than tradition-
al parallel DBMSs. Also, unlike paral-
lel DBMSs where the data must first be
loaded into a table with a predefined
schema before it can be queried, a Ma-
pReduce job can directly be executed
on schema-less input files. Further-
more, these data platforms are able to
automatically handle important issues
such as data partitioning, node fail-
ures, managing the flow of data across
nodes, and heterogeneity of nodes.

Data platforms based on the
MapReduce paradigm and its variants
have attracted strong interest in the
context of the “Big Data” challenge
in enterprise analytics, as described
in the introduction. Another factor
that makes such platforms attractive
is the ability to support analytics on
unstructured data such as text docu-
ments (including Web crawls), image
and sensor data by enabling execu-
tion of custom Map and Reduce func-
tions in a scalable manner. Recently,
these engines have been extended to
support features necessary for enter-
prise adoption (for example, Clou-
dera8). While serious enterprise adop-
tion is still in early stages compared
to mature parallel RDBMS systems,
exploration using such platforms is
growing rapidly, aided by the avail-
ability of the open source Hadoop14
ecosystem. Driven by the goal of
improving programmer productivity
while still exploiting the advantages
noted here, there have been recent
efforts to develop engines that can
take a SQL-like query, and automati-
cally compile it to a sequence of jobs
on a MapReduce engine (for example,
Thusoo et al.32). The emergence of
analytic engines based on MapReduce

is having an impact on parallel DBMS
products and research. For example,
some parallel DBMS vendors (for
example, Aster Data2) allow invoca-
tion of MapReduce functions over
data stored in the database as part
of a SQL query. The MapReduce func-
tion appears in the query as a table
that allows its results to be composed
with other SQL operators in the query.
Many other DBMS vendors provide
utilities to move data between MapRe-
duce-based engines and their relation-
al data engines. A primary use of such
a bridge is to ease the movement of
structured data distilled from the data
analysis on the MapReduce platform
into the SQL system.

Near Real-Time BI. The competi-
tive pressure of today’s businesses
has led to the increased need for near
real-time BI. The goal of near real-time
BI (also called operational BI or just-
in-time BI) is to reduce the latency
between when operational data is ac-
quired and when analysis over that
data is possible. Consider an airline
that tracks its most profitable cus-
tomers. If a high-value customer has a
lengthy delay for a flight, alerting the
ground staff proactively can help the
airline ensure that the customer is po-
tentially rerouted. Such near real-time
decisions can increase customer loy-
alty and revenue.

A class of systems that enables such
real-time BI is Complex Event Pro-
cessing (CEP) engines (for example,

Streambase29). Businesses can specify
the patterns or temporal trends that
they wish to detect over streaming op-
erational data (referred to as events),
and take appropriate actions when
those patterns occur. The genesis of
CEP engines was in the financial do-
main where they were used for appli-
cations such as algorithmic stock trad-
ing, which requires detecting patterns
over stock ticker data. However, they
are now being used in other domains
as well to make decisions in real time,
for example, clickstream analysis or
manufacturing process monitoring
(for example, over RFID sensor data).

CEP is different from traditional BI
since operational data does not need to
be first loaded into a warehouse before
it can be analyzed (see Figure 4). Appli-
cations define declarative queries that
can contain operations over stream-
ing data such as filtering, windowing,
aggregations, unions, and joins. The
arrival of events in the input stream(s)
triggers processing of the query. These
are referred to as “standing” or “con-
tinuous” queries since computation
may be continuously performed as
long as events continue to arrive in
the input stream or the query is explic-
itly stopped. In general, there could be
multiple queries defined on the same
stream; thus one of the challenges for
the CEP engine is to effectively share
computation across queries when
possible. These engines also need to
handle situations where the streaming

figure 4. Complex event processing server architecture.

Devices

Event Sources Event SourcesCEP Server

Web server

Standing queries

Database server Database server KPI dashboard

Pager Trading Station

Stock Ticker

ABC GHI
 25.50 50.75

DEF JKL
 33.60 45.15

MNO PQR
 15.30 25.50

96 CommuniCations of the aCm | auguST 2011 | vol. 54 | no. 8

review articles

data is delayed, missing, or out-of-or-
der, which raise both semantic as well
as efficiency challenges.

There are several open technical
problems in CEP; we touch upon a
few of them here. One important chal-
lenge is to handle continuous queries
that reference data in the database
(for example, the query references a
table of customers stored in the data-
base) without affecting near real-time
requirements. The problem of opti-
mizing query plans over streaming
data has several open challenges. In
principle, the benefit of an improved
execution plan for the query is un-
limited since the query executes “for-
ever.” This opens up the possibility of
more thorough optimization than is
feasible in a traditional DBMS. More-
over, the ability to observe execution
of operators in the execution plan over
an extended period of time can be po-
tentially valuable in identifying sub-
optimal plans. Finally, the increasing
importance of real-time analytics im-
plies that many traditional data min-
ing techniques may need to be revis-
ited in the context of streaming data.
For example, algorithms that require
multiple passes over the data are no
longer feasible for streaming data.

enterprise search
BI tasks often require searching over
different types of data within the en-
terprise. For example, a salesperson

who is preparing for a meeting with
a customer would like to know rel-
evant customer information before
the meeting. This information is to-
day siloed into different sources: CRM
databases, email, documents, and
spreadsheets, both in enterprise serv-
ers as well as on the user’s desktop. In-
creasingly, a large amount of valuable
data is present in the form of text, for
example, product catalogs, customer
emails, annotations by sales represen-
tatives in databases, survey responses,
blogs and reviews. In such scenarios,
the ability to retrieve and rank the
required information using the key-
word search paradigm is valuable for
BI. Enterprise search focuses on sup-
porting the familiar keyword search
paradigm over text repositories and
structured enterprise data. These en-
gines typically exploit structured data
to enable faceted search. For example,
they might enable filtering and sort-
ing over structured attributes of docu-
ments in the search results such as
authors, last modification date, docu-
ment type, companies (or other enti-
ties of interest) referenced in docu-
ments. Today, a number of vendors
(for example, FAST Engine Search11
and Google Search Appliance12) pro-
vide enterprise search capability.

A popular architecture for enter-
prise search engines is the integrated
model, shown in Figure 5. The search
engine crawls each data source and

stores the data into a central content
index using an internal representa-
tion that is suitable for fast querying.
The configuration data controls what
objects to index (for example, a crawl
query that returns objects from a data-
base) as well as what objects to return
in response to a user query (for ex-
ample, a serve query to run against the
database when the query keywords
match a crawled object). Several tech-
nical challenges need to be addressed
by enterprise search engines. First,
crawling relies on the availability of
appropriate adapters for each source.
Achieving a high degree of data fresh-
ness requires specialized adapt-
ers that can efficiently identify and
extract data changes at the source.
Second, ranking results across data
sources is non-trivial since there may
be no easy way to compare relevance
across sources. Unlike ranking in Web
search, links across documents in an
enterprise are much sparser and thus
not as reliable a signal. Similarly, que-
ry logs and click-through information
are typically not available at sufficient
scale to be useful for ranking. Finally,
deploying enterprise search can in-
volve manually tuning the relevance,
for example, by adjusting the weight
of each source.

extract-transform-Load tools
The accuracy and timeliness of report-
ing, ad hoc queries, and predictive anal-
ysis depends on being able to efficiently
get high-quality data into the data ware-
house from operational databases and
external data sources. Extract-Trans-
form-Load (ETL) refers to a collection
of tools that play a crucial role in help-
ing discover and correct data quality is-
sues and efficiently load large volumes
of data into the warehouse.

Data quality. When data from one
or more sources is loaded into the
warehouse, there may be errors (for
example, a data entry error may lead to
a record with State = ‘California’ and
Country = ‘Canada’), inconsistent rep-
resentations for the same value (for
example, ‘CA’, ‘California’), and miss-
ing information in the data. There-
fore, tools that help detect data quality
issues and restore data integrity in the
warehouse can have a high payoff for
BI. Data profiling tools enable identifi-
cation of data quality issues by detect-

figure 5. enterprise search architecture (integrated model).

Application

Query Engine

Indexing Engine

Query Search
Results

Content
Index

Configuration Data

Business Data Network share Web sites Email

review articles

auguST 2011 | vol. 54 | no. 8 | CommuniCations of the aCm 97

ing violations of properties that are
expected to hold in the data. For exam-
ple, consider a database of customer
names and addresses. In a clean da-
tabase, we might expect that (Name,
Address) combinations are unique.
Data profiling tools verify whether
this uniqueness property holds, and
can quantify the degree to which it is
violated, for example, this might hap-
pen if Name or Address information
is missing. Data profiling tools can
also discover rules or properties that
hold in a given database. For exam-
ple, consider an external data source
that needs to be imported into a data
warehouse. It is important to know
which columns (or sets of columns)
are keys (unique) for the source. This
can help in matching the incoming
data against existing data in the ware-
house. For efficiency, these tools of-
ten use techniques such as sampling
when profiling large databases.

Accurately extracting structure from
a string can play an important role in
improving data quality in the ware-
house. For example, consider a shop-
ping Web site that stores MP3 player
product data with attributes such as
Manufacturer, Brand, Model, Color,
Storage Capacity and receives a data
feed for a product as text, for example,
“Coby MP3 512MB MP-C756 – Blue.”
Being able to robustly parse the struc-
tured information present in the text
into the appropriate attributes in the
data warehouse is important, for exam-
ple, for answering queries on the Web
site. Vendors have developed extensive
sets of parsing rules for important ver-
ticals such as products and addresses.
The survey article by Sarawagi28 dis-
cusses techniques to the broader area
of information extraction.

Another important technology that
can help improve data quality is de-
duplication: identifying groups of ap-
proximately duplicate entities (for ex-
ample, customers). This can be viewed
as a graph clustering problem where
each node is an entity and an edge ex-
ists between two nodes if the degree
of similarity between two entities is
sufficiently high. The function that de-
fines the degree of similarity between
two entities is typically based on string
similarity functions such as edit dis-
tance (for example, ‘Robert’ and ‘Ro-
bet’ have an edit distance of as well as

domain-specific rules (for example,
‘Bob’ and ‘Robert’ are synonymous).
Thus, the ability to efficiently per-
form such approximate string match-
ing across many pairs of entities (also
known as fuzzy matching) is important
for de-duplication. Most major ven-
dors support fuzzy matching and de-
duplication as part of their ETL suite
of tools. An overview of tools for merg-
ing data from different sources can be
found in Bernstein.3

Data load and refresh. Data load
and refresh utilities are responsible
for moving data from operational da-
tabases and external sources into the
data warehouse quickly and with as
little performance impact as possible
at both ends. There are two major
challenges. First, there is a need to ef-
ficiently capture data at the sources,
that is, identify and collect data to be
moved to the data warehouse. Trig-
gers are general-purpose constructs
supported by SQL that allow rows
modified by an insert/update SQL
statement to be identified. However,
triggers are a relatively heavyweight
mechanism and can impose non-triv-
ial overheads on the operational da-
tabase running OLTP queries. A more
efficient way of capturing changed
data is to sniff the transaction log of
the database. The transaction log is
used by the database system to record
all changes so that the system can re-
cover in case of a crash. Some utilities
allow pushing filters when processing
transaction log records, so that only
relevant changed data is captured; for
example, only changed data pertain-
ing to a particular department within
the organization.

The second aspect relates to tech-
niques for efficiently moving captured
data into the warehouse. Over the
years, database engines have devel-
oped specialized, performance op-
timized APIs for bulk-loading data
rather than using standard SQL. Par-
titioning the data at the warehouse
helps minimize disruption of queries
at the data warehouse server. The data
is loaded into a partition, which is then
switched in using a metadata opera-
tion only. This way, queries referencing
that table are blocked only for a very
short duration required for the meta-
data operation rather than during the
entire load time. Finally, load utilities

also typically checkpoint the operation
so that in case of a failure the entire
work does not need to be redone. Us-
ing the techniques discussed above for
capturing changed data and efficient
loading, these days utilities are able to
approach refresh rates in a few seconds
(for example, Oracle GoldenGate22).
Thus, it is potentially possible to even
serve some near real-time BI scenarios,
as discussed earlier.

other Bi technology
Here, we discuss two areas we think are
becoming increasingly important and
where research plays a key role.

Data Mining and Text Analytics.
Data mining enables in-depth analy-
sis of data including the ability to
build predictive models. The set of
algorithms offered by data mining go
well beyond what is offered as aggre-
gate functions in relational DBMSs
and in OLAP servers. Such analysis
includes decision trees, market bas-
ket analysis, linear and logistic regres-
sion, neutral networks and more (see
survey6). Traditionally, data mining
technology has been packaged sepa-
rately by statistical software compa-
nies, for example, SAS,26 and SPSS.27
The approach is to select a subset of
data from the data warehouse, per-
form sophisticated data analysis on
the selected subset of data to identify
key statistical characteristics, and to
then build predictive models. Finally,
these predictive models are deployed
in the operational database. For ex-
ample, once a robust model to offer a
room upgrade to a customer has been
identified, the model (such as a deci-
sion tree) must be integrated back
in the operational database to be ac-
tionable. This approach leads to sev-
eral challenges: data movement from
warehouse to the data mining engine,
and potential performance and scal-
ability issues at the mining engine (or
implied limitations on the amount
of data used to build a model). To be
practical, such models need to be ef-
ficient to apply when new data arrives.
Increasingly, the trend is toward “in-
database analytics,” that is, integrat-
ing the data mining functionality in
the backend data-warehouse architec-
ture so that these limitations may be
overcome (for example, Netz et al.20
and Oracle Data Mining21).

98 CommuniCations of the aCm | auguST 2011 | vol. 54 | no. 8

review articles

Text analytics. Consider a com-
pany making portable music players
that conducts a survey of its prod-
ucts. While many survey questions are
structured (for example, demographic
information), other open-ended sur-
vey questions (for example, “Enter
other comments here”) are often free
text. Based on such survey responses,
the company would like to answer
questions such as: Which products
are referenced in the survey respons-
es? What topics about the product
are people mentioning? In these sce-
narios, the challenge is to reduce the
human cost of having to read through
large amounts of text data such as
surveys, Web documents, blogs, and
social media sites in order to extract
structured information necessary to
answer these queries. This is the key
value of text analytic engines. Today’s
text analysis engines (for example,
FAST11 and SAS26) primarily extract
structured data that can be broadly
categorized as: Named entities are
references to known objects such as
locations, people, products, and orga-
nizations. Concepts/topics are terms in
the documents that are frequently ref-
erenced in a collection of documents.
For example, in the above scenario of
portable music players, terms such as
“battery life,” “appearance,” and “ac-
cessories” may be important concepts/
topics that appear in the survey. Such
information can potentially be used as
a basis for categorizing the results of
the survey. Sentiment analysis produc-
es labels such as “positive,” “neutral,”
or “negative” with each text document
(or part of a document such as a sen-
tence). This analysis can help answer
questions such as which product re-
ceived the most negative feedback.

Cloud Data Services. Managing en-
terprise BI today requires handling
tasks such as hardware provisioning,
availability, and security patching.
Cloud virtualization technology (for
example, Amazon EC21) allows a server
to be hosted in the cloud in a virtual
machine, and enables server consoli-
dation through better utilization of
hardware resources. Hosted servers
also offer the promise of reduced cost
by offloading manageability tasks, and
leveraging the pay-as-you-go pricing
model to only pay for services that are
actually used. The success of hardware

virtualization in the cloud has prompt-
ed database vendors to virtualize data
services so as to further improve re-
source utilization and reduce cost.
These data services initially started as
simple key-value stores but have now
begun to support the functionality of
a single node relational database as a
hosted service (for example, Microsoft
SQL Azure18). While the primary initial
users of such cloud database services
are relatively simple departmental
applications (OLTP), the paradigm is
being extended to BI as well (for ex-
ample, Pentaho25).

The need for the full range of BI ser-
vices over the data collected by these
applications raises new challenges for
cloud database services. First, the per-
formance and scale requirements of
large reporting or ad hoc queries will
require database service providers to
support a massively parallel process-
ing system (parallel DBMS and/or Ma-
pReduce-based engine) in the cloud,
Second, these services are multi-ten-
ant, and complex SQL queries can be
resource intensive. Thus, the ability
to provide performance Service Level
Agreements (SLAs) to tenants and ju-
diciously allocate system resources
across tenant queries becomes im-
portant. Third, many of the technical
challenges of traditional “in-house”
BI such as security and fine grained
access control become amplified in
the context of cloud data services. For
example, techniques for processing
queries on encrypted data become
more important in public clouds. For
these reasons, an intermediate step
in adoption of BI technologies may be
in private clouds, which hold promise
similar to public clouds but with more
control over aspects such as security.

Conclusion
The landscape of BI in research and
industry is vibrant today. Data acquisi-
tion is becoming easier and large data
warehouses with 10s to 100s of tera-
bytes or more of relational data are
becoming common. Text data is also
being exploited as a valuable source
for BI. Changes in the hardware tech-
nology such as decreasing cost of
main memory are impacting how the
backend of large data-warehouses are
architected. Moreover, as cloud data
services take root, more changes in

the BI backend architecture are ex-
pected. Finally, there is increasing
demand to deliver interactive BI expe-
riences on mobile devices for today’s
knowledge workers. There are ample
opportunities to enable novel, rich,
and interactive BI applications on the
next generation of mobile devices.
Thus, business intelligence software
has many exciting technical challenges
and opportunities still ahead that will
continue to reshape its landscape.

References
1. amazon ec2; http://aws.amazon.com
2. aster data; http://www.asterdata.com.
3. bernstein, P. and haas, l. Information integration in

the enterprise. Commun ACM 51, 9 (sept. 2008).
4. chaudhuri, s. an overview of query optimization in

relational systems. ACM PODS 1998.
5. chaudhuri, s. and dayal, u. an overview of data

warehousing and olaP technology. SIGMOD Record
26, 1 (1997).

6. chaudhuri, s., dayal, u. and ganti, V. database
technology for decision support systems. IEEE
Computer 34, 12 (2001).

7. chaudhuri, s. and Narasayya, V. self-tuning database
systems: a decade of progress. In Proceedings of
VLDB 2007.

8. cloudera enterprises; http://www.cloudera.com
9. dean, J. and ghemawat, s. mapreduce: simplified

data processing on large clusters. In Proceedings of
OSDI 2004.

10. deWitt d.J. and gray J. Parallel database systems:
the future of high -performance database systems
Commun. ACM 35, 6 (June 1992).

11. fast enterprise search; http://www.fastsearch.com
12. google search appliance; http://www.google.com/

enterprise/gsa
13. graefe, g. Query evaluation techniques for large

databases. ACM Computing Surveys 25, 2 (June 1993).
14. hadoop; http://hadoop.apache.org
15. Ibm cognos; http://www.ibm.com
16. Isard et al. dryad: distributed data-parallel programs

from sequential building blocks. In Proceedings of
Eurosys 2001.

17. microsoft sQl server analysis services; http://www.
microsoft.com

18. microsoft sQl azure; http://www.microsoft.com
19. Netezza; http://www.netezza.com
20. Netz, a., chaudhuri, s., fayyad, u. and bernhardt, J.

Integrating data mining with sQl databases. OLE DB
for Data Mining, 2001.

21. oracle data mining; http://www.oracle.com
22. oracle goldengate; http://www.oracle.com
23. oracle hyperion; http://www.oracle.com
24. QlikView; http://www.qlikview.com
25. Pentaho; http://www.pentaho.com
26. sas: business analytics and business Intelligence

software; http://www.sas.com
27. sPss: data mining, statistical analysis, Predictive

analytics, decision support systems; http://www.
spss.com

28. sarawagi, s. Information extraction. Foundations and
Trends in Databases 1, 3 (2008), 261-377.

29. streambase; http://www.streambase.com
30. sybase IQ; http://www.sybase.com
31. teradata; http://www.teradata.com
32. thusoo, a. et al. hive—a warehousing solution over a

mapreduce framework. Vldb 2009

Surajit Chaudhuri (surajitc@microsoft.com) is a principal
researcher at microsoft research, redmond, Wa.

Umeshwar Dayal (umeshwar.dayal@hp.com) is an hP
fellow in the Intelligent enterprise technology labs at
hewlett-Packard lab, Palo alto, ca.

Vivek narasayya (viveknar@microsoft.com) is a principal
researcher at microsoft research, redmond, Wa.

© 2011 acm 0001-0782/11/08 $10.00

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

