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B Usiness intelliGence (Bi)  sOFtware  is a collection 
of decision support technologies for the enterprise 
aimed at enabling knowledge workers such as 
executives, managers, and analysts to make better 
and faster decisions. The past two decades have seen 
explosive growth, both in the number of products 
and services offered and in the adoption of these 
technologies by industry. This growth has been  
fueled by the declining cost of acquiring and storing 
very large amounts of data arising from sources  
such as customer transactions in banking, retail 
as well as in e-businesses, RFID tags for inventory 
tracking, email, query logs for Web sites, blogs, and 
product reviews. Enterprises today collect data at a 
finer granularity, which is therefore of much larger 
volume. Businesses are leveraging their data asset 

aggressively by deploying and experi-
menting with more sophisticated data 
analysis techniques to drive business 
decisions and deliver new functional-
ity such as personalized offers and ser-
vices to customers. Today, it is difficult 
to find a successful enterprise that 
has not leveraged BI technology for 
its business. For example, BI technol-
ogy is used in manufacturing for or-
der shipment and customer support, 
in retail for user profiling to target 
grocery coupons during checkout, in 
financial services for claims analysis 
and fraud detection, in transportation 
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for fleet management, in telecommu-
nications for identifying reasons for 
customer churn, in utilities for power 
usage analysis, and health care for 
outcomes analysis. 

A typical architecture for support-
ing BI within an enterprise is shown in 
Figure 1 (the shaded boxes are technol-
ogy that we focus on in this article). The 
data over which BI tasks are performed 
often comes from different sources—
typically from multiple operational da-
tabases across departments within the 
organization, as well as external ven-
dors. Different sources contain data 

of varying quality, use inconsistent 
representations, codes, and formats, 
which have to be reconciled. Thus the 
problems of integrating, cleansing, 
and standardizing data in preparation 
for BI tasks can be rather challenging. 
Efficient data loading is imperative for 
BI. Moreover, BI tasks usually need to 
be performed incrementally as new 
data arrives, for example, last month’s 
sales data. This makes efficient and 
scalable data loading and refresh ca-
pabilities imperative for enterprise BI. 
These back-end technologies for pre-
paring the data for BI are collectively 

 key insights

  the cost of data acquisition and data 
storage has declined significantly. this 
has increased the appetite of businesses 
to acquire very large volumes in order to 
extract as much competitive advantage 
from it as possible.

  new massively parallel data architec-
tures and analytic tools go beyond  
traditional parallel sQL data warehouses 
and oLaP engines.

  the need to shorten the time lag 
between data acquisition and decision 
making is spurring innovations in 
business intelligence technologies.
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referred to as Extract-Transform-Load 
(ETL) tools. Increasingly there is a need 
to support BI tasks in near real time, 
that is, make business decisions based 
on the operational data itself. Special-
ized engines referred to as Complex 
Event Processing (CEP) engines have 
emerged to support such scenarios. 

The data over which BI tasks are 
performed is typically loaded into a 
repository called the data warehouse 
that is managed by one or more data 
warehouse servers. A popular choice of 
engines for storing and querying ware-
house data is relational database man-
agement systems (RDBMS). Over the 
past two decades, several data struc-
tures, optimizations, and query pro-
cessing techniques have been devel-
oped primarily for executing complex 
SQL queries over large volumes of da-
ta—a key requirement for BI. An exam-
ple of such an ad hoc SQL query is: find 
customers who have placed an order 
during the past quarter whose amount 
exceeds the average order amount by at 
least 50%. Large data warehouses typi-
cally deploy parallel RDBMS engines so 
that SQL queries can be executed over 
large volumes of data with low latency. 

As more data is born digital, there is 
increasing desire to architect low-cost 
data platforms that can support much 
larger data volume than that tradition-
ally handled by RDBMSs. This is often 
described as the “Big Data” challenge. 
Driven by this goal, engines based on 
the MapReduce9 paradigm—originally 
built for analyzing Web documents 
and Web search query logs—are now 
being targeted for enterprise analyt-

ics. Such engines are currently being 
extended to support complex SQL-like 
queries essential for traditional enter-
prise data warehousing scenarios. 

Data warehouse servers are comple-
mented by a set of mid-tier servers that 
provide specialized functionality for 
different BI scenarios. Online analytic 
processing (OLAP) servers efficiently 
expose the multidimensional view of 
data to applications or users and en-
able the common BI operations such 
as filtering, aggregation, drill-down 
and pivoting. In addition to tradition-
al OLAP servers, newer “in-memory 
BI” engines are appearing that exploit 
today’s large main memory sizes to 
dramatically improve performance of 
multidimensional queries. Reporting 
servers enable definition, efficient ex-
ecution and rendering of reports—for 
example, report total sales by region 
for this year and compare with sales 
from last year. The increasing availabil-
ity and importance of text data such as 
product reviews, email, and call center 
transcripts for BI brings new challeng-
es. Enterprise search engines support 
the keyword search paradigm over text 
and structured data in the warehouse 
(for example, find email messages, 
documents, history of purchases and 
support calls related to a particular 
customer), and have become a valuable 
tool for BI over the past decade. Data 
mining engines enable in-depth analy-
sis of data that goes well beyond what 
is offered by OLAP or reporting servers, 
and provides the ability to build predic-
tive models to help answer questions 
such as: which existing customers are 

likely to respond to my upcoming cata-
log mailing campaign? Text analytic en-
gines can analyze large amounts of text 
data (for example, survey responses or 
comments from customers) and ex-
tract valuable information that would 
otherwise require significant manual 
effort, for example, which products are 
mentioned in the survey responses and 
the topics that are frequently discussed 
in connection with those products. 

There are several popular front-
end applications through which users 
perform BI tasks: spreadsheets, en-
terprise portals for searching, perfor-
mance management applications that 
enable decision makers to track key 
performance indicators of the busi-
ness using visual dashboards, tools 
that allow users to pose ad hoc que-
ries, viewers for data mining models, 
and so on. Rapid, ad hoc visualization 
of data can enable dynamic explora-
tion of patterns, outliers and help un-
cover relevant facts for BI. 

In addition, there are other BI tech-
nologies (not shown in Figure 1) such 
as Web analytics, which enables under-
standing of how visitors to a compa-
ny’s Web site interact with the pages; 
for example which landing pages are 
likely to encourage the visitor to make 
a purchase. Likewise, vertical pack-
aged applications such as customer 
relationship management (CRM) are 
widely used. These applications often 
support built-in analytics, for exam-
ple, a CRM application might provide 
functionality to segment customers 
into those most likely and least likely 
to repurchase a particular product. 

figure 1. typical business intelligence architecture.
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today, it is difficult 
to find a successful 
enterprise that  
has not leveraged  
Bi technology for 
their business. 

Another nascent but important area is 
mobile BI that presents opportunities 
for enabling novel and rich BI applica-
tions for knowledge workers on mo-
bile devices.

In this short article, we are not 
able to provide comprehensive cover-
age of all technologies used in BI (see 
Chaudhuri et al.5 for additional details 
on some of these technologies). We 
therefore chose to focus on technology 
where research can play, or has his-
torically played, an important role. In 
some instances, these technologies are 
mature but challenging research prob-
lems still remain—for example, data 
storage, OLAP servers, RDBMSs, and 
ETL tools. In other instances, the tech-
nology is relatively new with several 
open research challenges, for example, 
MapReduce engines, near real-time BI, 
enterprise search, data mining and text 
analytics, cloud data services.

Data storage
Access structures. Decision support 
queries require operations such as 
filtering, join, and aggregation. To ef-
ficiently support these operations, 
special data structures (not typically 
required for OLTP queries) have been 
developed in RDBMSs, described here. 
Access structures used in specialized 
OLAP engines that do not use RDBMSs 
are discussed later. 

Index structures. An index enables 
associative access based on values of a 
particular column. When a query has 
one or more filter conditions, the se-
lectivities of these conditions can be 
exploited through index scans (for ex-
ample, an index on the StoreId column 
can help retrieve all sales for StoreId = 
23) and index intersection (when mul-
tiple conditions exist). These opera-
tions can significantly reduce, and in 
some cases eliminate, the need to ac-
cess the base tables, for example, when 
the index itself contains all columns 
required to answer the query. Bitmap 
indexes support efficient index opera-
tions such as union and intersection. A 
bitmap index on a column uses one bit 
per record for each value in the domain 
of that column. To process a query of 
the form column1 = val1 AND column2 = 
val2 using bitmap indexes, we identify 
the qualifying records by taking the bit-
wise AND of the respective bit vectors. 
While such representations are very 

effective for low cardinality domains 
(for example, gender), they can also be 
used for higher cardinality domains 
using bitmap compression. 

Materialized views. Reporting que-
ries often require summary data, for 
example, aggregate sales of the most 
recent quarter and the current fiscal 
year. Hence, precomputing and mate-
rializing summary data (also referred 
to as materialized views) can help dra-
matically accelerate many decision 
support queries. The greatest strength 
of a materialized view is its ability to 
specifically target certain queries by ef-
fectively caching their results. However 
this very strength also can limit its ap-
plicability, that is, for a slightly differ-
ent query it may not be possible to use 
the materialized view to answer that 
query. This is in contrast to an index, 
which is a much more general struc-
ture, but whose impact on query per-
formance may not be as dramatic as 
a materialized view. Typically, a good 
physical design contains a judicious 
mix of indexes and materialized views. 

Partitioning. Data partitioning can 
be used to improve both performance 
(discussed later) and manageability. 
Partitioning allows tables and indexes 
to be divided into smaller, more man-
ageable units. Database maintenance 
operations such as loading and backup 
can be performed on partitions rather 
than an entire table or index. The com-
mon types of partitioning supported 
today are hash and range. Hybrid 
schemes that first partition by range 
followed by hash partitioning within 
each range partition are also common. 

Column-oriented storage. Tradition-
al relational commercial database en-
gines store data in a row-oriented man-
ner, that is, the values of all columns 
for a given row in a table are stored 
contiguously. The Sybase IQ product30 
pioneered the use of column-oriented 
storage, where all values of a particular 
column are stored contiguously. This 
approach optimizes for “read-mostly” 
workloads of ad hoc queries. The col-
umn-oriented representation has two 
advantages. First, significantly greater 
data compression is possible than in 
a row-oriented store since data values 
within a column are typically much 
more repetitive than across columns. 
Second, only the columns accessed in 
the query need to be scanned. In con-
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trast, in a row-oriented store, it is not 
easy to skip columns that are not ac-
cessed in the query. Together, this can 
result in reduced time for scanning 
large tables. 

Finally, we note that in the past de-
cade, major commercial database sys-
tems have added automated physical 
design tools that can assist database ad-
ministrators (DBAs) in choosing appro-
priate access structures (see Chaudhuri 
and Narasayya7 for an overview) based 
on workload information, such as que-
ries and updates executed on the sys-
tem, and constraints, for example, total 
storage allotted to access structures. 

Data Compression can have signifi-
cant benefits for large data warehouses. 
Compression can reduce the amount 
of data that needs to be scanned, and 
hence the I/O cost of the query. Second, 
since compression reduces the amount 
of storage required for a database, it can 
also lower storage and backup costs. 
A third benefit is that compression ef-
fectively increases the amount of data 
that can be cached in memory since the 
pages can be kept in compressed form, 
and decompressed only on demand. 
Fourth, certain common query opera-
tions (for example, equality conditions, 
duplicate elimination) can often be 
performed on the compressed data it-
self without having to decompress the 
data. Finally, compressing data that 
is transferred over the network effec-
tively increases the available network 
bandwidth. This is important for paral-
lel DBMSs where data must be moved 
across nodes. Data compression plays 
a key role not just in relational DBMSs, 
but also in other specialized engines, 
for example, in OLAP.

There are different compression 
techniques used in relational DBMSs. 
Null suppression leverages the fact that 
several commonly used data types in 
DBMSs are fixed length (for example, 
int, bigint, datetime, money), and sig-
nificant compression is possible if they 
are treated as variable length for stor-
age purposes. Only the non-null part 
of the value is stored along with the 
actual length of the value. Dictionary 
compression identifies repetitive values 
in the data and constructs a dictionary 
that maps such values to more com-
pact representations. For example, a 
column that stores the shipping mode 
for an order may contain string values 
such as ‘AIR’, ‘SHIP’, ‘TRUCK’. Each 
value can be represented using two 
bits by mapping them to values 0,1,2 
respectively. Finally, unlike compres-
sion schemes in row-oriented stores 
where each instance of a value requires 
an entry (potentially with fewer bits), 
in column-oriented stores other com-
pression techniques such as run-length 
encoding (RLE) can become more effec-
tive. In RLE compression, a sequence 
of k instances of value v is encoded by 
the pair (v,k). RLE is particularly attrac-
tive when long runs of the same value 
occur; this can happen for columns 
with relatively few distinct values, or 
when the column values are sorted. 

There are several interesting tech-
nical challenges in data compression. 
First, new compression techniques 
suitable for large data warehouses and 
incurring an acceptable trade-off with 
decompression and update costs are 
important. Second, even for known 
compression techniques important 
open problems remain—for example, 

for RLE—the choice of sort order of 
the table can significantly affect the 
amount of compression possible. De-
termining the best sort order to use is 
a non-trivial optimization problem. 
Finally, the decision of whether to 
compress access structures is work-
load dependent. Thus, there is a need 
for automated physical design tools to 
also recommend which access struc-
tures should be compressed and how 
based on workload information. 

Query Processing
A popular conceptual model used for 
BI tasks is the multidimensional view of 
data, as shown in Figure 2. In a multidi-
mensional data model, there is a set of 
numeric measures that are the objects 
of analysis. Examples of such mea-
sures are sales, budget, revenue, and 
inventory. Each of the numeric mea-
sures is associated with a set of dimen-
sions, which provide the context for the 
measure. For example, the dimensions 
associated with a sale amount can be 
the Product, City, and the Date when 
the sale was made. Thus, a measure 
can be viewed as a value in the multidi-
mensional space of dimensions. Each 
dimension is described by a set of attri-
butes, for example, the Product dimen-
sion may consist of the following at-
tributes: the category, industry, model 
number, year of its introduction. The 
attributes of a dimension may be re-
lated via a hierarchy of relationships. 
For example, a product is related to its 
category and the industry attributes 
through a hierarchical relationship 
(Figure 2). Another distinctive feature 
of the conceptual model is its stress 
on aggregation of measures by one or 
more dimensions; for example, com-
puting and ranking the total sales by 
each county for each year. 

OLAP Servers. Online Analytic pro-
cessing (OLAP) supports operations 
such as filtering, aggregation, pivoting, 
rollup and drill-down on the multi-
dimensional view of the data. OLAP 
servers are implemented using either 
a multidimensional storage engine 
(MOLAP); a relational DBMS engine 
(ROLAP) as the backend; or a hybrid 
combination called HOLAP.

MOLAP servers. MOLAP servers di-
rectly support the multidimensional 
view of data through a storage engine 
that uses the multidimensional array 

figure 2. multidimensional data.
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abstraction. They typically precom-
pute large data cubes to speed up query 
processing. Such an approach has the 
advantage of excellent indexing prop-
erties and fast query response times, 
but provides relatively poor storage uti-
lization, especially when the data set is 
sparse. To better adapt to sparse data 
sets, MOLAP servers identify dense and 
sparse regions of the data, and store/
index these regions differently. For ex-
ample dense sub-arrays of the cube are 
identified and stored in array format, 
whereas the sparse regions are com-
pressed and stored separately.

ROLAP servers. In ROLAP, the mul-
tidimensional model and its opera-
tions have to be mapped into relations 
and SQL queries. They rely on the data 
storage techniques described earlier 
to speed up relational query process-
ing. ROLAP servers may also need 
to implement functionality not sup-
ported in SQL, for example, extended 
aggregate functions such as median, 
mode, and time window based moving 
average. The database designs used 
in ROLAP are optimized for efficiency 
in querying and in loading data. Most 
ROLAP systems use a star schema to 
represent the multidimensional data 
model. The database consists of a 
single fact table and a single table for 
each dimension. Each row in the fact 
table consists of a pointer (a.k.a. for-
eign key) to each of the dimensions 
that provide its multidimensional 
coordinates, and stores the numeric 
measures for those coordinates. Each 
dimension table consists of columns 
that correspond to attributes of the di-
mension. Star schemas do not explic-
itly provide support for attribute hier-
archies. Snowflake schemas (shown in 
Figure 3) provide a refinement of star 
schemas where the dimensional hier-
archy is explicitly represented by nor-
malizing the dimension tables. This 
leads to advantages in maintaining 
the dimension tables. 

HOLAP servers. The HOLAP archi-
tecture combines ROLAP and MOLAP 
by splitting storage of data in a MO-
LAP and a relational store. Splitting 
the data can be done in different ways. 
One method is to store the detailed 
data in a RDBMS as ROLAP servers do, 
and precomputing aggregated data in 
MOLAP. Another method is to store 
more recent data in MOLAP to pro-

vide faster access, and older data in 
ROLAP. Since MOLAP performs bet-
ter when the data is reasonably dense 
and ROLAP servers perform for sparse 
data, Like MOLAP servers, HOLAP 
servers also perform density analysis 
to identify sparse and dense sub-re-
gions of the multidimensional space. 
All major data warehouse vendors to-
day offer OLAP servers (for example, 
IBM Cognos,15 Microsoft SQL,17 and 
Oracle Hyperion23).

In-memory BI engines. Technol-
ogy trends are providing an opportu-
nity for a new class of OLAP engines 
focused on exploiting large main 
memory to make response times for 
ad-hoc queries interactive. First, the 
ratio of time to access data on disk vs. 
data in memory is increasing. Second, 
with 64-bit operating systems becom-
ing common, very large addressable 
memory sizes (for example, 1TB) are 
possible. Third, the cost of memory 
has dropped significantly, which 
makes servers with large amounts of 
main memory affordable. Unlike tra-
ditional OLAP servers, in-memory BI 
engines (for example, QlikView24) rely 
on a different set of techniques for 
achieving good performance. First, 
since the detailed data is memory 
resident they avoid expensive I/Os re-
quired to access data cubes, indexes, 
or materialized views. Second, they 
use data structures that would not be 
suitable for disk-based access, but are 
very effective for in-memory access. 

For example, consider a query that 
computes the total sales for each cus-
tomer in a particular state. When the 
data is initially loaded into the system, 
the engine can associate pointers from 
each state to customers in that state, 
and similarly pointers from a cus-
tomer to all the order detail records 
for that customer. This allows fast as-
sociative access required to answer 
the query quickly, and is reminiscent 
of approaches used by object-oriented 
databases as well as optimizations in 
traditional DBMSs such as join indices. 
Third, in-memory BI engines can sig-
nificantly increase the effective data 
sizes over which they can operate in 
memory by using data organization 
techniques such as column-oriented 
storage and data compression. In-
memory BI engines are best suited 
for read-mostly data without in-place 
data updates where new data arrives 
primarily in the form of incremental 
batch inserts due to data decompres-
sion cost. 

Relational Servers. Relational data-
base servers (RDBMSs) have tradition-
ally served as the backend of large data 
warehouses. Such data warehouses 
need to be able to execute complex 
SQL queries as efficiently as possible 
against very large databases. The first 
key technology needed to achieve this 
is query optimization, which takes a 
complex query and compiles that query 
into an execution plan. To ensure that 
the execution plan can scale well to 

figure 3. snowflake schema.
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large databases, data partitioning and 
parallel query processing are leveraged 
extensively (see Graefe13 for an over-
view of query processing techniques). 
We therefore discuss two pieces of key 
technology—query optimization and 
parallel query processing.

Query optimization technology has 
been a key enabler for BI. The query 
optimizer is responsible for select-
ing an execution plan for answering 
a query. The execution plan is a com-
position of physical operators (such 
as Index Scan, Hash Join, Sort) that 
when evaluated generates the results 
of the query. The performance of a 
query crucially depends on the abil-
ity of the optimizer to choose a good 
plan from a very large space of alterna-
tives. The difference in execution time 
between a good and bad plan for such 
complex queries can be several orders 
of magnitudes (for example, days in-
stead of minutes). This topic has been 
of keen interest in database research 
and industry (an overview of the field 
appears in Chaudhuri4). Following the 
pioneering work done in the System R 
optimizer from IBM Research in the 
late 1970s, the next major architec-
tural innovation came about a decade 
later: extensible optimizers. This al-
lowed system designers to “plug-in” 
new rules and extend the capabilities 
of the optimizer. For example, a rule 
could represent equivalence in rela-
tional algebra (for example, pushing 
down an aggregation below join). Ap-
plication of such rules can potentially 
transform the execution plan into one 
that executes much faster. Extensible 
optimizers allowed many important 
optimizations developed by indus-
try and research over the years to be 
incorporated relatively easily with-
out having to repeatedly modify the 
search strategy of the optimizer. 

Despite the success of query optimi-
zation and the crucial role it plays in BI, 
many fundamental challenges still re-
main. The optimizer needs to address 
the inherently difficult problem of esti-
mating the cost of a plan, that is, the to-
tal work (CPU, I/O, among others) done 
by the plan. However, constrained by 
the requirement to impose only a small 
overhead, the optimizer typically uses 
limited statistical information such as 
histograms describing a column’s data 
distribution. Such approximations 

of all processors, and can become a 
bottleneck. Shared disk systems are 
relatively cost effective for small- to 
medium-sized data warehouses. 

In shared nothing systems (for ex-
ample, Teradata31) data needs to be 
distributed across nodes a priori. They 
have the potential to scale to much 
larger data sizes than shared disk sys-
tems. However, the decision of how to 
effectively distribute the data across 
nodes is crucial for performance and 
scalability. This is important both from 
the standpoint of leveraging parallel-
ism, but also to reduce the amount of 
data that needs to be transferred over 
the network during query processing. 
Two key techniques for data distribu-
tion are partitioning and cloning. For 
example consider a large database 
with the schema shown in Figure 3. 
Each of the two large fact tables, Orders 
and OrderDetails can be hash parti-
tioned across all nodes on the OrderId 
attribute respectively, that is, on the 
attribute on which the two tables are 
joined. All other dimension tables, 
which are relatively small, could be 
cloned (replicated) on each node. Now 
consider a query that joins Customers, 
Orders and OrderDetails. This query can 
be processed by issuing one query per 
node, each operating on a subset of the 
fact data and joining with the entire 
dimension table. As a final step, the re-
sults of each of these queries are sent 
over the network to a single node that 
combines them to produce the final 
answer to the query. 

Data warehouse appliances. Recently 
a new generation of parallel DBMSs 
referred to as data warehouse appli-
ances (for example, Netezza19) have ap-
peared. An appliance is an integrated 
set of server and storage hardware, 
operating system and DBMS software 
specifically pre-installed and pre-opti-
mized for data warehousing. These ap-
pliances have gained impetus from the 
following trends. First, since DW appli-
ance vendors control the full hardware/
software stack, they can offer the more 
attractive one service call model. Sec-
ond, some appliances push part of the 
query processing into specialized hard-
ware thereby speeding up queries. For 
example, Netezza uses FPGAs (field- 
programmable gate arrays) to evaluate 
selection and projection operators on 
a table in the storage layer itself. For 

sometimes result in brittleness since 
large inaccuracies can lead to genera-
tion of very poor plans. There has been 
research in leveraging feedback from 
query execution to overcome errors 
made by the query optimizer by observ-
ing actual query execution behavior 
(for example, the actual result size of 
a query expression), and adjusting the 
execution plan if needed. However, 
collecting and exploiting feedback at 
low overhead is also challenging, and 
much more work is needed to realize 
the benefits of this approach.

Parallel processing and appliances. 
Parallelism plays a significant role in 
processing queries over massive da-
tabases. Relational operators such as 
selection, projection, join, and aggre-
gation present many opportunities for 
parallelism. The basic paradigm is data 
parallelism, that is, to apply relational 
operators in parallel on disjoint subsets 
of data (partitions), and then combine 
the results. The article by Dewitt and 
Gray10 provides an overview of work in 
this area. For several years now, all ma-
jor vendors of database management 
systems have offered data partitioning 
and parallel query processing technol-
ogy. There are two basic architectures 
for parallelism: Shared disk, where each 
processor has a private memory but 
shares disks with all other processors. 
Shared nothing, where each processor 
has private memory and disk and is typ-
ically a low-cost commodity machine. 
Interestingly, while these architectures 
date back about two decades, neither 
has yet emerged as a clear winner in the 
industry and successful implementa-
tions of both exist today. 

In shared disk systems all nodes 
have access to the data via shared 
storage, so there is no need to a priori 
partition the data across nodes as in 
the shared nothing approach. During 
query processing, there is no need to 
move data across nodes. Moreover, 
load balancing is relatively simple 
since any node can service any re-
quest. However, there are a couple 
of issues that can affect scalability of 
shared disk systems. First, the nodes 
need to communicate in order to en-
sure data consistency. Typically this 
is implemented via a distributed lock 
manager, which can incur non-trivial 
overhead. Second, the network must 
support the combined I/O bandwidth 



review articles

auguST 2011  |   vol.  54  |   no.  8  |   CommuniCations of the aCm     95

typical decision support queries this 
can significantly reduce the amount of 
data that needs to be processed in the 
DBMS layer. 

Distributed Systems using Map-
Reduce Paradigm. Large-scale data 
processing engines based on the Map-
Reduce paradigm9 were originally devel-
oped to analyze Web documents, query 
logs, and click-through information 
for index generation and for improving 
Web search quality. Platforms based 
on a distributed file system and using 
the MapReduce runtime (or its variants 
such as Dryad16) have been successfully 
deployed on clusters with an order of 
magnitude more nodes than tradition-
al parallel DBMSs. Also, unlike paral-
lel DBMSs where the data must first be 
loaded into a table with a predefined 
schema before it can be queried, a Ma-
pReduce job can directly be executed 
on schema-less input files. Further-
more, these data platforms are able to 
automatically handle important issues 
such as data partitioning, node fail-
ures, managing the flow of data across 
nodes, and heterogeneity of nodes. 

Data platforms based on the 
MapReduce paradigm and its variants 
have attracted strong interest in the 
context of the “Big Data” challenge 
in enterprise analytics, as described 
in the introduction. Another factor 
that makes such platforms attractive 
is the ability to support analytics on 
unstructured data such as text docu-
ments (including Web crawls), image 
and sensor data by enabling execu-
tion of custom Map and Reduce func-
tions in a scalable manner. Recently, 
these engines have been extended to 
support features necessary for enter-
prise adoption (for example, Clou-
dera8). While serious enterprise adop-
tion is still in early stages compared 
to mature parallel RDBMS systems, 
exploration using such platforms is 
growing rapidly, aided by the avail-
ability of the open source Hadoop14 
ecosystem. Driven by the goal of 
improving programmer productivity 
while still exploiting the  advantages 
noted here, there have been recent 
efforts to develop engines that can 
take a SQL-like query, and automati-
cally compile it to a sequence of jobs 
on a MapReduce engine (for example, 
Thusoo et al.32). The emergence of 
analytic engines based on MapReduce 

is having an impact on parallel DBMS 
products and research. For example, 
some parallel DBMS vendors (for 
example, Aster Data2) allow invoca-
tion of MapReduce functions over 
data stored in the database as part 
of a SQL query. The MapReduce func-
tion appears in the query as a table 
that allows its results to be composed 
with other SQL operators in the query. 
Many other DBMS vendors provide 
utilities to move data between MapRe-
duce-based engines and their relation-
al data engines. A primary use of such 
a bridge is to ease the movement of 
structured data distilled from the data 
analysis on the MapReduce platform 
into the SQL system. 

Near Real-Time BI. The competi-
tive pressure of today’s businesses 
has led to the increased need for near 
real-time BI. The goal of near real-time 
BI (also called operational BI or just-
in-time BI) is to reduce the latency 
between when operational data is ac-
quired and when analysis over that 
data is possible. Consider an airline 
that tracks its most profitable cus-
tomers. If a high-value customer has a 
lengthy delay for a flight, alerting the 
ground staff proactively can help the 
airline ensure that the customer is po-
tentially rerouted. Such near real-time 
decisions can increase customer loy-
alty and revenue.

A class of systems that enables such 
real-time BI is Complex Event Pro-
cessing (CEP) engines (for example, 

Streambase29). Businesses can specify 
the patterns or temporal trends that 
they wish to detect over streaming op-
erational data (referred to as events), 
and take appropriate actions when 
those patterns occur. The genesis of 
CEP engines was in the financial do-
main where they were used for appli-
cations such as algorithmic stock trad-
ing, which requires detecting patterns 
over stock ticker data. However, they 
are now being used in other domains 
as well to make decisions in real time, 
for example, clickstream analysis or 
manufacturing process monitoring 
(for example, over RFID sensor data). 

CEP is different from traditional BI 
since operational data does not need to 
be first loaded into a warehouse before 
it can be analyzed (see Figure 4). Appli-
cations define declarative queries that 
can contain operations over stream-
ing data such as filtering, windowing, 
aggregations, unions, and joins. The 
arrival of events in the input stream(s) 
triggers processing of the query. These 
are referred to as “standing” or “con-
tinuous” queries since computation 
may be continuously performed as 
long as events continue to arrive in 
the input stream or the query is explic-
itly stopped. In general, there could be 
multiple queries defined on the same 
stream; thus one of the challenges for 
the CEP engine is to effectively share 
computation across queries when 
possible. These engines also need to 
handle situations where the streaming 

figure 4. Complex event processing server architecture.
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data is delayed, missing, or out-of-or-
der, which raise both semantic as well 
as efficiency challenges.

There are several open technical 
problems in CEP; we touch upon a 
few of them here. One important chal-
lenge is to handle continuous queries 
that reference data in the database 
(for example, the query references a 
table of customers stored in the data-
base) without affecting near real-time 
requirements. The problem of opti-
mizing query plans over streaming 
data has several open challenges. In 
principle, the benefit of an improved 
execution plan for the query is un-
limited since the query executes “for-
ever.” This opens up the possibility of 
more thorough optimization than is 
feasible in a traditional DBMS. More-
over, the ability to observe execution 
of operators in the execution plan over 
an extended period of time can be po-
tentially valuable in identifying sub-
optimal plans. Finally, the increasing 
importance of real-time analytics im-
plies that many traditional data min-
ing techniques may need to be revis-
ited in the context of streaming data. 
For example, algorithms that require 
multiple passes over the data are no 
longer feasible for streaming data. 

enterprise search
BI tasks often require searching over 
different types of data within the en-
terprise. For example, a salesperson 

who is preparing for a meeting with 
a customer would like to know rel-
evant customer information before 
the meeting. This information is to-
day siloed into different sources: CRM 
databases, email, documents, and 
spreadsheets, both in enterprise serv-
ers as well as on the user’s desktop. In-
creasingly, a large amount of valuable 
data is present in the form of text, for 
example, product catalogs, customer 
emails, annotations by sales represen-
tatives in databases, survey responses, 
blogs and reviews. In such scenarios, 
the ability to retrieve and rank the 
required information using the key-
word search paradigm is valuable for 
BI. Enterprise search focuses on sup-
porting the familiar keyword search 
paradigm over text repositories and 
structured enterprise data. These en-
gines typically exploit structured data 
to enable faceted search. For example, 
they might enable filtering and sort-
ing over structured attributes of docu-
ments in the search results such as 
authors, last modification date, docu-
ment type, companies (or other enti-
ties of interest) referenced in docu-
ments. Today, a number of vendors 
(for example, FAST Engine Search11 
and Google Search Appliance12) pro-
vide enterprise search capability. 

A popular architecture for enter-
prise search engines is the integrated 
model, shown in Figure 5. The search 
engine crawls each data source and 

stores the data into a central content 
index using an internal representa-
tion that is suitable for fast querying. 
The configuration data controls what 
objects to index (for example, a crawl 
query that returns objects from a data-
base) as well as what objects to return 
in response to a user query (for ex-
ample, a serve query to run against the 
database when the query keywords 
match a crawled object). Several tech-
nical challenges need to be addressed 
by enterprise search engines. First, 
crawling relies on the availability of 
appropriate adapters for each source. 
Achieving a high degree of data fresh-
ness requires specialized adapt-
ers that can efficiently identify and 
extract data changes at the source. 
Second, ranking results across data 
sources is non-trivial since there may 
be no easy way to compare relevance 
across sources. Unlike ranking in Web 
search, links across documents in an 
enterprise are much sparser and thus 
not as reliable a signal. Similarly, que-
ry logs and click-through information 
are typically not available at sufficient 
scale to be useful for ranking. Finally, 
deploying enterprise search can in-
volve manually tuning the relevance, 
for example, by adjusting the weight 
of each source. 

extract-transform-Load tools
The accuracy and timeliness of report-
ing, ad hoc queries, and predictive anal-
ysis depends on being able to efficiently 
get high-quality data into the data ware-
house from operational databases and 
external data sources. Extract-Trans-
form-Load (ETL) refers to a collection 
of tools that play a crucial role in help-
ing discover and correct data quality is-
sues and efficiently load large volumes 
of data into the warehouse.

Data quality. When data from one 
or more sources is loaded into the 
warehouse, there may be errors (for 
example, a data entry error may lead to 
a record with State = ‘California’ and 
Country = ‘Canada’), inconsistent rep-
resentations for the same value (for 
example, ‘CA’, ‘California’), and miss-
ing information in the data. There-
fore, tools that help detect data quality 
issues and restore data integrity in the 
warehouse can have a high payoff for 
BI. Data profiling tools enable identifi-
cation of data quality issues by detect-

figure 5. enterprise search architecture (integrated model). 
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ing violations of properties that are 
expected to hold in the data. For exam-
ple, consider a database of customer 
names and addresses. In a clean da-
tabase, we might expect that (Name, 
Address) combinations are unique. 
Data profiling tools verify whether 
this uniqueness property holds, and 
can quantify the degree to which it is 
violated, for example, this might hap-
pen if Name or Address information 
is missing. Data profiling tools can 
also discover rules or properties that 
hold in a given database. For exam-
ple, consider an external data source 
that needs to be imported into a data 
warehouse. It is important to know 
which columns (or sets of columns) 
are keys (unique) for the source. This 
can help in matching the incoming 
data against existing data in the ware-
house. For efficiency, these tools of-
ten use techniques such as sampling 
when profiling large databases.

Accurately extracting structure from 
a string can play an important role in 
improving data quality in the ware-
house. For example, consider a shop-
ping Web site that stores MP3 player 
product data with attributes such as 
Manufacturer, Brand, Model, Color, 
Storage Capacity and receives a data 
feed for a product as text, for example, 
“Coby MP3 512MB MP-C756 – Blue.” 
Being able to robustly parse the struc-
tured information present in the text 
into the appropriate attributes in the 
data warehouse is important, for exam-
ple, for answering queries on the Web 
site. Vendors have developed extensive 
sets of parsing rules for important ver-
ticals such as products and addresses. 
The survey article by Sarawagi28 dis-
cusses techniques to the broader area 
of information extraction. 

Another important technology that 
can help improve data quality is de-
duplication: identifying groups of ap-
proximately duplicate entities (for ex-
ample, customers). This can be viewed 
as a graph clustering problem where 
each node is an entity and an edge ex-
ists between two nodes if the degree 
of similarity between two entities is 
sufficiently high. The function that de-
fines the degree of similarity between 
two entities is typically based on string 
similarity functions such as edit dis-
tance (for example, ‘Robert’ and ‘Ro-
bet’ have an edit distance of as well as 

domain-specific rules (for example, 
‘Bob’ and ‘Robert’ are synonymous). 
Thus, the ability to efficiently per-
form such approximate string match-
ing across many pairs of entities (also 
known as fuzzy matching) is important 
for de-duplication. Most major ven-
dors support fuzzy matching and de-
duplication as part of their ETL suite 
of tools. An overview of tools for merg-
ing data from different sources can be 
found in Bernstein.3

Data load and refresh. Data load 
and refresh utilities are responsible 
for moving data from operational da-
tabases and external sources into the 
data warehouse quickly and with as 
little performance impact as possible 
at both ends. There are two major 
challenges. First, there is a need to ef-
ficiently capture data at the sources, 
that is, identify and collect data to be 
moved to the data warehouse. Trig-
gers are general-purpose constructs 
supported by SQL that allow rows 
modified by an insert/update SQL 
statement to be identified. However, 
triggers are a relatively heavyweight 
mechanism and can impose non-triv-
ial overheads on the operational da-
tabase running OLTP queries. A more 
efficient way of capturing changed 
data is to sniff the transaction log of 
the database. The transaction log is 
used by the database system to record 
all changes so that the system can re-
cover in case of a crash. Some utilities 
allow pushing filters when processing 
transaction log records, so that only 
relevant changed data is captured; for 
example, only changed data pertain-
ing to a particular department within 
the organization. 

The second aspect relates to tech-
niques for efficiently moving captured 
data into the warehouse. Over the 
years, database engines have devel-
oped specialized, performance op-
timized APIs for bulk-loading data 
rather than using standard SQL. Par-
titioning the data at the warehouse 
helps minimize disruption of queries 
at the data warehouse server. The data 
is loaded into a partition, which is then 
switched in using a metadata opera-
tion only. This way, queries referencing 
that table are blocked only for a very 
short duration required for the meta-
data operation rather than during the 
entire load time. Finally, load utilities 

also typically checkpoint the operation 
so that in case of a failure the entire 
work does not need to be redone. Us-
ing the techniques discussed above for 
capturing changed data and efficient 
loading, these days utilities are able to 
approach refresh rates in a few seconds 
(for example, Oracle GoldenGate22). 
Thus, it is potentially possible to even 
serve some near real-time BI scenarios, 
as discussed earlier. 

other Bi technology 
Here, we discuss two areas we think are 
becoming increasingly important and 
where research plays a key role.

Data Mining and Text Analytics. 
Data mining enables in-depth analy-
sis of data including the ability to 
build predictive models. The set of 
algorithms offered by data mining go 
well beyond what is offered as aggre-
gate functions in relational DBMSs 
and in OLAP servers. Such analysis 
includes decision trees, market bas-
ket analysis, linear and logistic regres-
sion, neutral networks and more (see 
survey6). Traditionally, data mining 
technology has been packaged sepa-
rately by statistical software compa-
nies, for example, SAS,26 and SPSS.27 
The approach is to select a subset of 
data from the data warehouse, per-
form sophisticated data analysis on 
the selected subset of data to identify 
key statistical characteristics, and to 
then build predictive models. Finally, 
these predictive models are deployed 
in the operational database. For ex-
ample, once a robust model to offer a 
room upgrade to a customer has been 
identified, the model (such as a deci-
sion tree) must be integrated back 
in the operational database to be ac-
tionable. This approach leads to sev-
eral challenges: data movement from 
warehouse to the data mining engine, 
and potential performance and scal-
ability issues at the mining engine (or 
implied limitations on the amount 
of data used to build a model). To be 
practical, such models need to be ef-
ficient to apply when new data arrives. 
Increasingly, the trend is toward “in-
database analytics,” that is, integrat-
ing the data mining functionality in 
the backend data-warehouse architec-
ture so that these limitations may be 
overcome (for example, Netz et al.20 
and Oracle Data Mining21).



98    CommuniCations of the aCm    |   auguST 2011  |   vol.  54  |   no.  8

review articles

Text analytics. Consider a com-
pany making portable music players 
that conducts a survey of its prod-
ucts. While many survey questions are 
structured (for example, demographic 
information), other open-ended sur-
vey questions (for example, “Enter 
other comments here”) are often free 
text. Based on such survey responses, 
the company would like to answer 
questions such as: Which products 
are referenced in the survey respons-
es? What topics about the product 
are people mentioning? In these sce-
narios, the challenge is to reduce the 
human cost of having to read through 
large amounts of text data such as 
surveys, Web documents, blogs, and 
social media sites in order to extract 
structured information necessary to 
answer these queries. This is the key 
value of text analytic engines. Today’s 
text analysis engines (for example, 
FAST11 and SAS26) primarily extract 
structured data that can be broadly 
categorized as: Named entities are 
references to known objects such as 
locations, people, products, and orga-
nizations. Concepts/topics are terms in 
the documents that are frequently ref-
erenced in a collection of documents. 
For example, in the above scenario of 
portable music players, terms such as 
“battery life,” “appearance,” and “ac-
cessories” may be important concepts/
topics that appear in the survey. Such 
information can potentially be used as 
a basis for categorizing the results of 
the survey. Sentiment analysis produc-
es labels such as “positive,” “neutral,” 
or “negative” with each text document 
(or part of a document such as a sen-
tence). This analysis can help answer 
questions such as which product re-
ceived the most negative feedback. 

Cloud Data Services. Managing en-
terprise BI today requires handling 
tasks such as hardware provisioning, 
availability, and security patching. 
Cloud virtualization technology (for 
example, Amazon EC21) allows a server 
to be hosted in the cloud in a virtual 
machine, and enables server consoli-
dation through better utilization of 
hardware resources. Hosted servers 
also offer the promise of reduced cost 
by offloading manageability tasks, and 
leveraging the pay-as-you-go pricing 
model to only pay for services that are 
actually used. The success of hardware 

virtualization in the cloud has prompt-
ed database vendors to virtualize data 
services so as to further improve re-
source utilization and reduce cost. 
These data services initially started as 
simple key-value stores but have now 
begun to support the functionality of 
a single node relational database as a 
hosted service (for example, Microsoft 
SQL Azure18). While the primary initial 
users of such cloud database services 
are relatively simple departmental 
applications (OLTP), the paradigm is 
being extended to BI as well (for ex-
ample, Pentaho25). 

The need for the full range of BI ser-
vices over the data collected by these 
applications raises new challenges for 
cloud database services. First, the per-
formance and scale requirements of 
large reporting or ad hoc queries will 
require database service providers to 
support a massively parallel process-
ing system (parallel DBMS and/or Ma-
pReduce-based engine) in the cloud, 
Second, these services are multi-ten-
ant, and complex SQL queries can be 
resource intensive. Thus, the ability 
to provide performance Service Level 
Agreements (SLAs) to tenants and ju-
diciously allocate system resources 
across tenant queries becomes im-
portant. Third, many of the technical 
challenges of traditional “in-house” 
BI such as security and fine grained 
access control become amplified in 
the context of cloud data services. For 
example, techniques for processing 
queries on encrypted data become 
more important in public clouds. For 
these reasons, an intermediate step 
in adoption of BI technologies may be 
in private clouds, which hold promise 
similar to public clouds but with more 
control over aspects such as security. 

Conclusion
The landscape of BI in research and 
industry is vibrant today. Data acquisi-
tion is becoming easier and large data 
warehouses with 10s to 100s of tera-
bytes or more of relational data are 
becoming common. Text data is also 
being exploited as a valuable source 
for BI. Changes in the hardware tech-
nology such as decreasing cost of 
main memory are impacting how the 
backend of large data-warehouses are 
architected. Moreover, as cloud data 
services take root, more changes in 

the BI backend architecture are ex-
pected. Finally, there is increasing 
demand to deliver interactive BI expe-
riences on mobile devices for today’s 
knowledge workers. There are ample 
opportunities to enable novel, rich, 
and interactive BI applications on the 
next generation of mobile devices. 
Thus, business intelligence software 
has many exciting technical challenges 
and opportunities still ahead that will 
continue to reshape its landscape.  
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